MITSUBISHI

QnNnA SEeRiEs

QnACPU

Programming Manual (Fundamentals)
_| | I N

/
// W
n

QA RN
HEISEE N

Mitsubishi Programmable Logic Controller

SAFETY CAUTIONS

(You must read these cautions before using the product)

In connection with the use of this product, in addition to carefully reading both this manual and the
related manuals indicated in this manual, it is also essential to pay due attention to safety and handle

the product correctly. _
The safety cautions given here apply to this product in isolation. For information on the safety of the

PLC system as a whole, refer to the CPU module User’s Manual.
Store this manual carefully in a place where it is accessible for reference whenever necessary, and
forward a copy of the manual to the end user.

[System Design Precautions]

<> panGER

o Safety circuits should be installed external to the programmable controller to
ensure that the system as a whole will continue to operate safely in the event
of an external power supply malfunction or a programmable controller failure.
Erroneous outputs and operation could result in an accident.

1) The following circuitry should be installed outside the programmable .
controller:

Interlock circuitry for the emergency stop circuit protective circuit, and for
reciprocal operations such as forward/reverse, etc., and interlock circuitry
tor upper/lower positioning limits, etc., to prevent machine damage.

2) When the programmable controller detects an abnormal condition,
processing is stopped and all outputs are switched OFF. This happens in
the following cases:

» When the power supply module’s over-current or over-voltage protection
device is activated.

» When an error (watchdog timer error, etc.) is detected at the PC CPU by
the self-diagnosis function.

Some errors, such as input/output control errors, cannot be detected by the

PC CPU, and there may be cases when all outputs are turned ON when

such errors occur. In order to ensure that the machine operates safely in

such cases, a failsafe circuit or mechanism should be provided outside the

programmable controller. Reter to the CPU module user’s manual for an

example of such a failsafe circuit.

3) Outputs may become stuck at ON or OFF due to an output module relay or
transistor failure. An external circuit should therefore be provided to
monitor output signals whose incorrect operation could cause serious
accidents.

» A circuit should be installed which permits the external power supply to be
switched ON only after the programmable controller power has been switched
ON. Accidents caused by erroneous outputs and motion could result if the
external power supply is switched ON first.

e When a data link communication error occurs, the status shown below will be
established at the faulty station. In order to ensure that the system operates
safely at such times, an interlock circuit should be provided in the sequence
program {(using the communication status information).

Erroneous outputs and operation could result in an accident.

1) The data link data which existed prior to the error will be held.

2) All outputs will be switched OFF at MELSECNET (I, /B, /10) remote I/O
stations.

3) At the MELSECNET/MINI-S3 remote I/O stations, all outputs will be
switched OFF or output statuses will be held, depending on the E.C. mode
setting.

For details on procedures for checking faulty stations, and for operation

statuses when such errors occur, refer to the appropriate data link manual.

[System Design Precautions]

/\ caution

Do not bundle control lines or communication wires together with main circuit
or power lines, or lay them close to these lines.

As a guide, separate the lines by a distance of at least 100 mm, otherwise
malfunctions may occur due to noise.

[Cautions on Mounting]

/N cauTion

Use the PC in an environment that conforms to the general specifications in
the manual.

Using the PC in environments outside the ranges stated in the general
specifications will cause electric shock, fire, malfunction, or damage
to/deterioration of the product.

Make sure that the module fixing projection on the base of the module is
properly engaged in the module fixing hole in the base unit before mounting
the module.)

Failure to mount the module properly will result in malfunction or failure, or in
the module falling. :

Extension cables should be securely connected to base unit and module
connectors. Check for loose connection after installation.

A poor connection could result in contact problems and erroneous
inputs/outputs.

Plug the memory cassette firmly into the memory cassette mounting
connector. Check for loose connection after installation.
A poor connection could result in erroneous operation.

Plug the memory firmly into the memory socket. Check for loose connection
after installation.
A poor connection could result in erroneous operation.

[Cautions on Wiring]

> pANGER

» Switch off the external power supply before staring installation and wiring
work.

Failure to do so could result in electrical shocks and equipment damage. .

o After installation and wiring is completed, be sure to attach the terminal cover
before switching the power ON and starting operation.
Failure to do so could result in electrical shocks.

/I\ cautioN

e Be sure to ground the FG and LG terminals, carrying out at least class 3
grounding work with a ground exclusive to the PC.
Otherwise there will be a danger of electric shock and malfunctions.

e Carry out wiring to the PC correctly, checking the rated voltage and terminal
arrangement of the product.
Using a power supply that does not conform to the rated voltage, or carrying
out wiring incorrectly, will cause fire or failure.

e OQutputs from multiple power supply modules should not be connected in
parallel. Failure to do so could cause the power supply module to overheat,
resulting in a fire or module failure.

+ Tighten the terminal screws to the stipulated torque.
Loose screws will cause short circuits, fire, or malfunctions.

e Make sure that no foreign matter such as chips or wiring offcuts gets inside
the module.
It will cause fire, failure or malfunction.

¢ Connectors for external connections should be crimped, pressure welded, or
soldered in the correct manner using the correct tools.
For details regarding crimping and pressure welding tools, refer to the
input/output module user’'s manual.
A poor connection could cause shorts, fire, and erroneous operation.

[Cautions on Startup and Maintenance]

<> DANGER

¢ Do not touch terminals while the power is ON.
This will cause malfunctions.

e Make sure that the battery is connected properly. Do not attempt to charge or
disassemble the battery, do not heat the battery or place it in a flame, and do

not short or solder the battery.
Incorrect handling of the battery can cause battery heat generation and

ruptures which could result in fire or injury.

+ Switch the power off before cleaning or re-tightening terminal screws.
Carrying out this work while power is ON will cause failure or malfunction
of the module.

/\ CAUTION

e In order to ensure safe operation, read the manual carefully to acquaint
yourself with procedures for program changes, forced outputs, RUN, STOP,
and PAUSE operations, etc., while operation is in progress.

Incorrect operation could result in machine failure and injury.
¢ Do not disassemble or modify any module.
This will cause failure, malfunction, injury, or fire.

» Switch the power OFF before mounting or removing the module.

Mounting or removing it with the power ON can cause failure or malfunction of
the module.

* When replacing fuses, be sure to use the prescribed fuse. A fuse of the wrong
capacity could cause a fire.

« Do not drop or add an impact to the battery to be mounted in the module.
Otherwise the battery will be broken, possibly causing internal leakage of
electrolyte.

Do not use but dispose of the battery if it has fallen or an impact is given to it.

« Before touching the module, always touch grounded metal, etc. to discharge

static electricity from human body.
Failure to do so can cause the module to fail or malfunction.

[Cautions on Disposal]

/\ CAUTION

e Dispose of this product as industrial waste.

REVISIONS

*The manual number is given on the bottom left of the back cover.

Print Date *Manual Number Revision

Jun., 1996 IB (NA) 66614-A First edition

Dec., 1997 IB (NA) 66614-B Standardization of terms for the QnA series
Internal Memory — Internal RAM

IC Memory card — Memory card
Q2AS(H)CPU(-S1) and Q4ARCPU added.

Correction

About Manuals

Sections 1.1, 1.2, 1.3, 2.2.1, 2.2.2, 2.2.3, 2.3.2, 2.3.3,
2.4,3.1.1, 3.1.3, 3.2, 3.2.3, 3.2.4, 3.3.2, 4.1, 4.1.1, 4.2,
4.2.7,4.2.13,4.3.8,4.4,4.5,4.7, 410, 4.13.1, 5

ddition

i

Sections 2.6.1, 4.2.1, 4.2.10, 4.3.1
Page 3-20, 3-21

Sep., 1998 | IB (NA) 66614-C Correction

Contents, Section 2.2.1, 2.2.2,

. 2,2.3,2.3.3, 2.5, 3.1.2,
3.1.3,4.1.1,4.2.6, 4.6, 4.7, 4.13.1

i

Oct., 2000 IB (NA) 66614-D orrection
Section 2.3.3, 3.2.1, 3.3.2, 4.2.10, 4.2.11, 4.10, 4.13.1

i

Dec., 2002 | IB (NA) 66614-E orrection
Section 4.2.10

i

Dec., 2003 IB (NA) 66614-F orrection
Section 2.2.1,2.2.2,2.2.3,2.3.2,4.2.11

i

ddition
WARRANTY

i

Dec., 2005 | 1B (NA) 66614-G orrection

Section 2.5, 3.1.3,3.2.4,4.2.10
Chapter 5, Section6.1.2,6.2.2

Mar., 2006 | IB (NA) 66614-H orrection

i

Secfcion 421

Japanese Manual Version SH-3540- |

This manual confers no industrial property rights or any rights of any other kind, nor does it confer any patent licenses.
Mitsubishi Electric Corporation cannot be held responsible for any problems involving industrial property rights which
may occur as a result of using the contents noted in this manual.

© 1996 Mitsubishi Electric Corporation

INTRODUCTION

Thank you for choosing the Mitsubishi MELSEC-QnA Series of General Purpose Programmable
Controllers. Please read this manual carefully so that the equipment is used to its optimum.
A copy of this manual should be forwarded to the end User

CONTENTS

GENERAL DESCRIPTION i i i i i ittt cen e 1-1~1-9
B N o o -2 1= 11
1.2 Convenient Programming Devices and Instructions 1-4
1.3 Related ProgrammingManuals. i i i e 1-9
QNACPU FILES .. i i i i ittt sttt ettt e nanaarnenanns 2-1-2-16
21 QnACPU Internal RAM& Memory Cardsottt i e i i 2-3
2.2 Internal RAM . L o e e 2—-4
P B) (= g 1o Y o1 o 1 2-4
222 Formattingprecautions.t i 2-4
2.2.3 Memory capacity afterformatting e e 2-5
2.3 Memory Card. . ..o e e e 2-6
23T MemOrY mMap. . oot e e 2-6
2.3.2 Memory capacity afterformatting ool 2-7
2.3.3 Executing memory card programs (boot run) . e e 2-8
2.4 File Types & Storage Destinations of Files Managed by QnACPU. 2-9
2.5 Program File Configuration e 2-1
2.6 File Operation and File Handling Precautions. coiiiin... 2-12
2.8.1 Fileoperationcot it i e 2-12
2.6.2 Filehandling precautionsttt i e 2—-14
SEQUENCE PROGRAM CONFIGURATION & EXECUTION CONDITIONS 3-1~3-45
3.1 SequenceProgram...................... e 3-1
3.1.1 Main routine program T 3-4
3.1.2 Sub-routing Programs . .. v .ttt i e 3-5
3.1.3 Intermupt programs e e e e 3-8
3.2 Program Execution Conditions & Operation Processing.covvv.n.. 3-13
3.2.1 Initial execution programs. i e 3-15
3.2.2 Scan exXeCUtON PrOgramIS .« v vttt vttt ittt et e 3-17

3.2.3 Low-speed executionprogramscevurn... e 3-19
3.2.4 Standby ProOgrams. . v vt ot i e e 3-25
3.3 Input/Output Processing & Responselag, 3-32
3.3.1 Refreshmode.o i 3-32
3.3.2 Directmode. e 3-34
3.4 Numeric Values which Can Be Used in Sequence Programs. 3-37
3.41 BIN(BInary Code)t e 3-39
3.42 HEX(Hexadecimal) i e 3-41
3.4.3 BCD (BinaryCodedDecimal)....... ..o, 3—-42
3.44 Real nuUmbers i e 3-43
3.5 CharacterString Datao i e e 3-45

4. DEVICES.ciiiiiiiiiiieeniernereraarasnssssessnnsnnrrnnannnenn 4-1~4-66

41

4.2

4.3

4.4
4.5
4.6
4.7
4.8
4.9

4.10
4.11

4.12

413

Device List . ..ot e e e e e e 4—1
411 Devicelist. ... oo e e e e e 4-—-1
4.1.2 Setting unitsinthe internaluserdevice, .. 4-2
Internal User Devicest i i i i i e st et i e 4-4
4.2 INPUIS (X) ..ttt e e e et e 4—-4
422 OUPUS (Y) « v et e e e e e e e e e e e e e 4-7
423 Internalrelays (M)covuiiiiiiiii i e i e ettt e 4-10
424 Latchrelays (L) ivriiiii i i e i e e et et e e 4-11
425 Annunciators (F)ottt i i e e e e 4-12
428 Edgerelay (V). ..uvniii ittt et e e e e e 4-16
427 LinKrelays (B). .. coviiir it i e i e it e e 4-18
4.2.8 Speciallinkrelays (SB)ciiii ittt e e e e 4-20
4,29 Steprelays (S) v vviiiiii i i e e e e e e e e 4-20
e L I 1= £) P 421
4211 Counters (C) . ..ottt e e e e e 4-26
4212 Dataregisters (D)o vttt ittt e e et e e e 4-30
4.2.13 Linkregisters (W) ... oii it i et st ettt 4-31
4.2.14 Speciallinkregisters (SW) ...ttt i i e ittt i e 4-33
Internal System DeviCesot vi it it i it i ettt e e 4-34
4.3.1 Functiondevices (FX,FY,FD)ttt e iiie e 4-34
4.3.2 Specialrelays (SM).ottt it e 4-35
4.3.3 Specialregisters (SD). it e e, 4-36
Link Direct Devices (JIoN) L. it i i e e 4-36
Special Function Module Devices (UINGI) . ..ottt it e et e i e i e ens 4-40
IndexX Registers (Z) .. co ittt it i ettt e ettt e e, 4—41
File Registers (R) ... oovvi i i i it et e ittt eaie e 4-43
Nesting (N) ..ot i i i e e ettt e s 4-50
oY1 01 1 3 4 -51
4.9.1 Localpointersot e e e e 4-51
492 COmMMONPOIMIEIS . .t ittt ittt e e terecn e s nrneneenennenns 4 -52
Interrupt pointers (1), ..o oo vttt i i e i ettt e e 4-54
Other DeViCesS . . .ot v ittt i i it it i ittt et et et et e 4-56
4.11.1 SFChlockdevice (BL)c.vcviiiii i e e e st 4-56
4.11.2 SFCtransitiondevice (TR)c.cii it e et e e en 4 —-56
4.11.3 Network No. designationdevice (J)ottt ienne.. 4-56
4.11.4 /O No. designationdevice (U)cooiiiiii ittt e iann 4-57
4.11.5 Macro instruction argumentdevice (VD). i, 4-58
Constantscuuan... e e et 4-59
4.12.1 Decimalconstants (K)............... e et 4-59
4.12.2 Hexadecimalconstants (H)...........ot 4-59
4123 Realnumbers (E)oviii it i ittt it e ittt 4-60
4124 Characterstring (") oottt i i i ittt e e 4-60
Convenient UsesforDevicesoriii it i e e ittt e v enes 4-61
4.13.1 Globaldevices &localdevices.........coviiiiiin i, 4 -61
4.13.2 Deviceinitialvalues ..ot i i i e, 4—-64

PARAMETER LIST.ottt ittt iirensn s snensasconanenss 5-1~-5-6

PROCEDURE FOR WRITING PROGRAMSTOQnACPUc.ccovevnenns 6—-1~-6-9
6.1 Writing Procedure For 1 Program o ittt i i ettt eeeenn s 6-—1
6.1.1 ltems to consider when creatingoneprogramcoiviinnn.. 6-1
6.1.2 Procedure for writing programs tothe QnACPU., 6-2
6.2 Procedure For Multiple Programs e 6-5
6.2.1 ltems to consider when creating multiple programs, 6-5
6.2.2 Procedure for writing programs tothe QnACPU. 6-7

—iii—

About Manuals

The manuals related to the QnACPU are listed in the table below.

Please order those you require.

l?elated Manuals

Manual Name

Manual Number

QnACPU Guidebook

Describes the system configuration, operation methods, etc. (Supplied with the product)

Aimed at people using QnACPU for the first time. Describes procedures for everything from creat- |B-66606

ing programs and writing created programs to the CPU, to debugging. (13FJ10)

Also describes how to use the QnACPU most effectively.

Q2A(S1)/Q3A/Q4ACPU User's Manual

Describes the performance, functions, and handling of the Q2ACPU(S1), Q3ACPU, and Q4ACPU, 1B-66608

and the specifications and handling of memory cards and base units. (13J821)
(Purchased separately)

Q4ARCPU User's Manual

Describes the performance, functions, handling, etc., of the Q4ARCPU, and also the specifications iB-66685

and handling of bus switching modules, system control modules, power supply module, memory (134852)

card, and base units. (Purchased separately)

Q2AS(H)CPU(S1) User’'s Manual

Describes the performance, functions, handling, etc., of the Q2ASCPU, Q2ASCPU-51, Q2ASH- SH-3589

CPU, and Q2ASHCPU-81, and the specifications and handling of power supply modules, memory (BJ858)

cards and base units. (Purchased separately)

QCPU (Q mode)/QnACPU Programming Manual (Common Instructions) H

Describes how to use sequence instructions, basic instructions, and application instructions. SH-080039
(Purchased separately) (13JF58)

QnACPU Programming Manual (Special Function module) SH-4013

Describes the dedicated instructions for special function modules available when using the (13JF56)

Q2ACPU(S1), Q3ACPU, and Q4ACPU. {Purchased separately)

QnACPU Programming Manual (AD57 Instructions) IB-66617

Describes the dedicated instructions for controlling an AD57(S1) type CRT controller module (13JF49)

available when using the Q2ACPU(S1), Q3ACPU, or Q4ACPU. (Purchased separately) ‘

QCPU (Q mode)/QnACPU Programming Manual {(PID Control Instructions) SH-080040

Describes the dedicated instructions for PID control available when using the Q2ACPU(S1), 15‘”:59

Q3ACPU, or Q4ACPU. (Purchased separately) ()

QCPU (Q mode)/QnACPU Programming Manual (SFC) SH-080041

Describes the performance specifications, functions, programming, debugging, and error codes, for (13JF60)

SFC program. (Purchased separately)

For QnA/Q4AR MELSECNET/10 Network System Reference Manual 1B-66690

Describes the general concept, specifications, and part names and settings, for MELSECNET/10. (13JF78)
(Purchased separately)

MELSECNET, MELSECNET/B Data Link System Reference Manual IB-66350

Describes the general concept, specifications, and part names and settings, for MELSECNET (l!), (13JF70)

MELSECNET/B. (Purchased separately)

GX Developer Version8 Operating Manual)

Describes the online functions of GX Developer including the programming procedure, printing out IB-0800243E

procedure, monitoring procedure, and debugging procedure. (Purchased separately)

Type SW2IVD-GPPQ GPP Function Operating Manual (Offline) 1B-66774

Describes the how to create programs and print out data when using SW2IVD-GPPQ, and the of- (13J921)

fline functions of SW2IVD-GPPQ such as file maintenance. (Supplied with the product)

Type SW2IVD-GPPQ GPP Function Operating Manual (Online) |1B-66775

Describes the online functions of SW2IVD-GPPQ, including the methods for monitoring and debug- (13J922)

ging. ’ "(Supplied with the product)

Type SW2IVD-GPPQ GPP Function Operating Manual (SFC) 1B-66776

Describes SFC functions such as SFC program editing and monitoring. (Supplied with the product) (13J923)

Type SW2IVD-GPPQ GPP Software package Operating Manual (Q6TEL) I1B-66777

1. GENERAL DESCRIPTION

1.

1.1

GENERAL DESCRIPTION

Programs

This manual describes the required program types, the I/O processing, the
devices, etc., when programming for the following CPU modules in the MEL-
SEC QnA series. :

* Q2AS(H)CPU(S1)

 Q2ACPU(S1)

* Q3ACPU

* Q4ACPU

+ Q4ARCPU

All of the above modules are referred to generically in this manual as
"QnACPU".

(1) Program management by memory card is possible

(a) Programs created at a peripheral device can be stored in the
QnACPU’s internal RAM or memory card. Parameters, programs,
device comments, and device initial setting values can be stored in
the internal RAM and memory card. Other file register and fault
history data, etc., can be stored in the memory card only (storage in
the internal RAM is not possible. See Section 2.4). Note that device
comments ("** in figure below) stored in the internal RAM cannot be
used in the instructions of the program currently being executed.

Only parameters, programs, Device
comments, and device initial setting —
values can be written. QRACPU

Paorameters Programs

Device
initial
values

Device
Comments *

Per'!pherol

Internal

device

RAM

Parameters Programs

Device Device File Foult

oos] :
Comments ;r:]t;s registers history

memaory

card

1. GENERAL DESCRIPTION

()

MELSEC-QnA

(b) The QnACPU processes programs which are stored in the internal

RAM.

QnACPU

internal RM | Execution of program in internal RAM
Parameter /

Program /

Programs stored in the memory card can be executed only after they
are first read to (booted to) the QnACPU internal RAM. (Programs
to be read to the QnACPU are designated by parameter settings, and
the boot operation is designated by a DIP switch setting at the
QnACPU.)

QnACPU

[internal RAM

Parameter /

Program

Parameter

Program

Memorly card Boot

L

Program construction

Execution of program booted from the
memory card to the internal RAM.

QnACPU programs are stored in a file format in the internal RAM or
memory card. Multiple programs can therefore be stored in the internal

RAM and memory card by using different file names.

Peripherat
device

Muitiple program
writing is possible

Vi

/

by using different
file names.

File nome: ABC File name: ABC File name: ABC File name: DEF

Parameter

Program

Device
Comment

Program

>| QnACPU

Writing from peripheral device to QnACPU.

This format permits the program creation operation to be split among
several designers, and allows program management and maintenance
to be carried out according to the process or function in question.
Moreover, revision and debugging is required only at the relevant pro-
grams when the specifications are changed.

1. GENERAL DESCRIPTION

MELSEC-QnA

(a) Example of program creation split among several designers:

QnACPU

Internal RAM
Memory card

Designer A ~} Program A l

Desi 5 Programs odin

esigner .l rogram H .
g i 9 are executed in

sequence.*

Designer C > Program C

(b) Example of programs split according to process:

QnACPU

Internaf RAM
/ Memory card

Loading precess } } Program A l
Split —
according _Program B_| Programs Ato D
to process are executed in

content [Assemby process | Pragram C | sequence.*2
Unloading procsas Pragram D I

.

1. *: See Section 3.2 for details regarding the execution sequence.

(c) Example of programs split according to function:

QnACPU
Internal RAM —'l
/ Memory card :
-
Initicl processing ~I Program A |
! i | The execution
- - sequence and
Split ‘} Program B I execution
- 3
?th:ordltr.\g ' \conditions can
o function Communication ‘I l be set to
content v Program C i | conform to
programs A to
(.) 1<

1. *1: Programs split according to process can be further split according to function.

2. *2: See Ssction 3.2 for details regarding the execution sequence and exscution
conditions.

1. GENERAL DESCRIPTION

1.2 Convenient Programming Devices and Instructions

The QnACPU features devices and instructions which facilitate program
creation. A few of these are described below.

(1) Flexible device designation

(a) Word device bits can be designated to serve as contacts or coils.

[For QnACPU] [For ACPU]
X0 D05 X0
| /
| — oA &= b ¥ov] oo [xemo
M5
Switches
] /
The 1/0 status ot b10 of DO — | M0y
b5 of DO is used ON and
as ON/OFF data OFF (1/0)
———| MOV [xmo[DO }—
\{ = D0.5
b5 bi4 b13 bi2 b1 b0 b9 b8 b7 b6 bS b4 b3 b2 bl b0 L. Bit designation
DO o4 o3 ow/e oL o/l oL 4L

Word device
designation

(b} Direct processing in 1-point units is possible within a program simply
by using direct access inputs (DX:Z) and direct access outputs

(DY)
[For QnACPU] [For ACPU]
MO DX10 _ -
= Comort &= F
L (Always ON)
Output to M9036
output module '———-—-[SEG |K1x10] K180
at instruction _—i L T }—
execution (X10 to X13 refresh)
MO X10 ‘

Read from l | / v100
input module _—‘ 7 N >‘

at instruction
execution M9036

—| f————— ses_[1v100] k180 |

(Y100 to Y103 refresh)

1. GENERAL DESCRIPTION

MELSEC-QnA

(c) Differential contacts (4 1}/ |}) eliminate the need for converting
inputs to pulses.

[For QnACPU] [For ACPU]
X0 X1 X0
A [< Y00 &= H Ps [Mo |
Y100 MO X1
/
-—-I { { vio0 >
Y100
ON at leading
edge of X0 —I

(d) The special function module’s buffer memory can be used in the
same way as devices when programming.

[For QnAGPU] [For ACPU]
X0 ‘ * '
}-—H—————[+p [use12] oo \—’ <

Readout of A68AD
buffer memory’s +p | D10 | Do
address 12 data

X0

FroMP| H5 | k12 [D10 | «i

=US\G12
L. Buffer memory
address desig-
nation
Special function

module designa-
tion

input (18 points)
tnput (16 points)
tnput (16 points)
ABBAD
AGBAD
A62DA
Output (16 points)
Output (16 pointa)

Power supply module
QnACPU

I-—lnput/output Nos.: X/Y50 to X/Y8F

(e) Direct access to link devices (LX, LY, LB, LW, LSB, LSW) of MEL-
SECNET/10 network modules is possible without refresh settings.

X0 *

}—————{ +P_Juswi2] Do

Direct readout of the
No.5 network module's
"LW12" link register.

*JO\W12

Link register
designation
Network No.

designation

AI71LP21
Input (16 points)
input (16 points)

AGBAD

ABBAD

AB2DA

QnACPU
Output (16 points)
Output (16 points)

Power supply module

Network No.5

1. GENERAL DESCRIPTION

MELSEC-QnA

(2) Edge relays simplify pulse conversion processing

(a) The use of a relay (V) that comes ON at the leading edge of the input
condition simplitfies pulse processing when a contact index qualifica-
tion has been made.

[Circuit example]

X0Z1 WVOZ1%

e — wor

[Timing chart]

oN
o of |]
ON
When | v o 1.
210 ——LN :
wo o [] I
oN
X1 OFF [
ON
When Vi OFF r
Z1=1 oN
M1 OFF |

(3) Simpler data processing

(a) Real numbers (floating decimal point data) and character string
constants can be used in the programming as they are.

Real Real
| e i
X0 data data data
00 RO
H L E+p [E123] 00 | RO E1.23 + L E345 4 —> | E468
Real number ADD instruction D1 R1
Character Character Character
[$4P [05 1“‘51" I R10 string data string data string data
Character string data LINK instruction D5§ "zv | Q" D10} "2¢ Q"
pe ! vcr AP + WoS1Y e D11 MO upw
D7 llUll llpll 012 llull "Pll
o8 NUL = D13} ns" | =¥
D14 INUL = | "1

[REMARK]

1. *: NUL indicates "00n" (character string END).

1. GENERAL DESCRIPTION

MELSEC-QnA

(b) Data processing instructions such as table processing instructions,
etc., enable high-speed processing of large amounts of data.

}—‘ F———mnsp[o [Ro | k2 |—I FIFotable FIFOtable
{nsertion source Insertion RO 3 >RO 4
destination Insertion position R1 10 R1 10
Instruction for data pof 15 |/ Re 20 R2 15
insertion at table " p3 30 \RS 20
R4 \R4 30

(4) Easy shared use of sub-routine programs

(a) A common pointer can be used to call the same sub-routine program
from all sequence programs being executed.

Program A
Sub-routine program
.[_ Mo I P1000 call SM400 MO
| o cALLP[P1000}H -} »£1000 {—| || }———Mov [Foo | oz |-
¢ N Always
L J ON
MO
Mov | rD1 | FD2 |
Program B
P1000 call
[e - R H
I o }— CALLP[P1000]
(b) The use of sub-routine call instructions with arguments simplifies the
creation of sub-routine programs which are called several times.
Argument designation Sub-routine program
MO b A ~ PO call SM400 MO
o {car] po [wo [kaxo] RO | »P0 | F——{wov | Foo [o2 H
[Always
~ Argument from FD2 * ON
’ Argument to FD1 MO
Sub-routine
program — Argument to FDO Mov l me FDZJ"
designation
Argument Po call
deslgnaﬁon ca RET
o . [’ H
100 (— - cate] Po I w10 [K4x10] R‘l%
L———- Argument from FD2 *

Argument to FD1

Argument to FDO

1. GENERAL DESCRIPTION

1. The QnACPU automatically determines the argument input/output condition.

MELSEC-QnA

e Sub-routine program "source” data is processed as input data to the sub-rou-
tine program.

® Sub-routine program "destination” data is processed as output data from the
sub-routine program.

1. GENERAL DESCRIPTION

1.3 Related Programming Manuals

in addition to this manual, the 5 manuals shown below also contain informa-
tion regarding instructions used in QnACPU operation.

* QnACPU Programming Manual (Common Instructions)

e QnACPU Programming Manual (Special Function Module)
e QnACPU Programming Manual (PID Control Instructions)
¢ QnACPU Programming Manual (AD57 Commands)

e QnACPU Programming Manual (SFC)

Use this manual for information regarding QnACPU programs, devices, and
input/output processing, etc., and refer to the other manuals for information
regarding the instructions which are used.

This manual

Explains the programs, device names,
and input/output processing related to
QnACPU operation.

QnACPU
Programming
Manual
(Common
Instructions)

QnACPU
Programming
Manual
(Spscial
Function
Module)

QnACPU
Programming
Manual
{AD57
Commands)

QnACPU
Programming
Manual
(PID Control
Instructions)

QnACPU
Programming
Manual (SFC)

Explains the common
instructions not described
in the manuals shown at
right.

Explains the instructions
used for special function
module (AJ71QC24 and
AJ71PT32-83, etc.)
operation.

1) For Q4ARCPU, apart from the programming manual indicated abovs, there is

Explains the AD57
commands used for
ADS7/ADS8 control.

Explains the instructions
used for PID control.

Explains SFC
operation.

also the Q4ARCPU Programming Manual (Application PID Edition).

2. QnACPU FILES

2. QnACPU FILES

Parameter, program, and comment data, etc., are assigned file names and
extension names, and are then stored in the QnACPU internal RAM or mem-
ory card.

When writing this data from a peripheral device to the QnACPU, the files to
be written are specified by their type (parameter program, comment, etc.)
rather than by their extension names.

(The peripheral device automatically assigns the appropriate extension
name for the file type which has been specified.)

The use of different file and extension names permits multiple files to be
stored in the QnACPU.

Because the QnACPU can also process a given program as one file, pro-
grams created can be managed individually according to their "designer”,
"process”, or "function” by using different program file names. Moreover,
program execution is possible for multiple programs stored at the QnACPU.
(See Chapter 3 for QnACPU program execution details.)

The QnACPU stores files in the available areas in the internal RAM and
memory card.

If the continuous available memory area is insufficient to accommodate a
file for which a writing request has occurred (from the peripheral device),
writing to the internal RAM and card will be impossible. (See Section 2.6.2)

A file name, file size, and creation date will be appended to each file.
The file list shown below is displayed at the peripheral device.

Drive/Path :C:\GPPQ\USR\ .
System :MELCO Title QnACPY
- Machine:MELCO Title :Sample program

File Type $ize Dac Title
]
9

15:47 =
FARAM P. 338 @ 15:22 :Transfer line 1 parameter file
LINEL QnA Seq 187 85 15:18 :Transfer line 1 program file

File(s): 2 Fres 154566656Byte(s)

The file list display items are explained below.

(1) File name
The file name consists of the file name (max. 8 chars.) and the exten-
sion (3 chars.) The QnACPU distinguishes between upper case and
lower case characters. (At the peripheral device, all characters are
converted to upper case characters.)
An extension name which corresponds to the file type designated
when the file was written in the peripheral device is automatically ap-
pended to the file name.

2. QnACPU FILES

(2)

3

(4)

Size

The file size is indicated in byte units.

Files are stored in the internal RAM in 4-byte units (1 step), and at the
memory card in 1-byte units. When calculating a file’s size, please
note that at least 64 bytes (132 bytes for programs) will be added to
all user created files other than file registers.

Data & time

The date & time when the file was written from the peripheral device
to the QnACPU is indicated.

Title
Indicates the user file application, etc. (max. of 32 chars.)

2. QnACPU FILES

21 QnACPU Internal RAM & Memory Cards

Designating the internal RAM & memory cards

The QnACPU features 2 types of file storage area: the internal RAM, and
the memory cards, with each memory area being assigned a drive No.*
The internal RAM is assigned drive No.0, the "CARD A" memory card is as-
signed drive Nos.1 & 2, and the "CARD B" memory card is assigned drive
Nos.3 & 4.

CARD A [

RAM area
memory card (drive No.1)

Internal RAM
__________ (drive No.0)
ROM area
(drive No.2)

CARD B

RAM area
memory card (drive No.3)

b e - —_— - —]

ROM arsa
(drive No.4)

1) *: When writing parameter data and programs, etc., from the peripheral device to
the QnACPU, the memory to which the data is written (internal RAM/memory
card) is designated by the drive number.

2. QnACPU FILES

MELSEC-QnA
2.2 Internal RAM

The memory map and memory size of the QnACPU internal RAM are de-
scribed in this section.

POINTS]

(1) Before the QnACPU internal RAM can be used for the first time, it
must be formatted. For details regarding the internal RAM format-
ting procedure, refer to the "SWOIVD/NX-GPPQ Type GPP
Function Software Package Operating Manual (Online)."

(2) Program files are stored in the internal RAM in 1k step units.

2.2.1 Memory map

Files are stored in the internal RAM in the following format.

Internal RAM

4k steps

0-15k steps
(1k step units)

s V%
User files
parameters,
sequence programs, Memory size after
formatting
comments, (see Section 2.2.3)
device initial values
¥

2.2.2 Formatting precautions

The QnACPU internal RAM can only be used after being formatted at the
peripheral device.

When formatting the internal RAM, designate whether or not a system area
is to be allocated for user settings. Up to 156k steps (in 1-step units) can be
allocated for the user setting system area.

The system area user setting data is used for communication with the serial
communication unit, and for registering monitor data from peripheral de-
vices connected to other stations in the network.

Although the designation of a user setting area speeds up monitoring from
the serial communication unit and other network stations, However, note that
the amount of space available for user files.

he capacity for the user files is reduced if the user setting area is reserved
in the system area.

2. QnACPU FILES

2.2.3 Memory capacity after formatting

The memory capacity available for user files varies according to the capacity
reserved for the user setting area of the system area.

The memory capacity available for user files with formatted internal RAM is
shown in Table 2.1.

The memory capacity available for user files can be checked in the peripheral
device file list.

Table 2.1 Memory capacity that can be used for user files after formatting

CPU Model Name Memory Capacity
Q2ACPU,
Q2AS(H)CPU 28k steps (114688 bytes) to 13 k steps (53248 bytes)
Q2ACPU-S1,
Q2AS(H)CPU-S1 60k steps (245760 bytes) to 45 k steps (184320 bytes)
Q3ACPU 92k steps (376832 bytes) to 77 k steps (315392 bytes)
Q4ACPU 124k stops (507904 bytes) to 109 k steps (446464 bytes)

2. QnACPU FILES |
: MELSEC-QnA

23 Memory Card

The memory map and memory capacity of the QnACPU memory card are
described in this section.

POINTS[

(1) Before the QnACPU memory card can be used for the first time, it
must be formatted by a peripheral device. Parameter data and
program files, etc., cannot be stored at the memory card unti! it has
been formatted. For details regarding the memory card formatting
procedure, refer to the "SWLIIVD/NX-GPPQ Type GPP Function
Software Package Operating Manual (Online)."

(2) Program files are stored in the memory card in 512 bytes (128
steps) step units.

2,3.1 Memory map

Files are stored in the memory card in the following format.

memory card

This area is automatically
secured after formatting.

L

User files

parameters,

sequence programs, Memory capacity after

comments, formatting

device initial values

2. QnACPU FILES

2.3.2 Memory capacity after formatting
After the memory card has been formatted, the memory card capacity
which is displayed at the peripheral device’s file list display will be as
shown below.

Table 2.2 Memory Size after Formatting

Memory Card Memory Capacity (k-bytes) Max. Number of Files Stored

Model Name SRAM E2PROM Flash Memory SRAM E2PROM Flash Memory
QIMEM-64S 59 — — 118 — —
Q1MEM-128S 123 — — 128 — —
Q1MEM-2568 250.5 — — 128 — —
QIMEM-5128 506 — — 128 — —
QIMEM-1MS 1016.5 - — 128 — —
QIMEM-2MS 2036.0 — - 256 — —
QIMEM-64SE . 28.5 29.0 _ 57 58 —
QIMEM-128SE 58.5 59.0 —_ 117 118 —
Q1MEM-256SE 122.5 123.0 — 128 128 —
QIMEM-512SE 250.0 250.5 — 128 128 —
QIMEM-1MSE 505.5 506.0 — 128 128 —
Q1MEM-256SR 122.5 — . 128 — 128
QIMEM-512SR 250.0 — * 128 — 128
Q1MEM-1MSR 505.5 — * 128 — 128
QIMEM-2MSR 1016.0 — . 128 — 128

* Depends on the specifications of the memory card reader/
writer that does the formatting.

2. QnACPU FILES

MELSEC-QnA

2.3.3 Executing memory card programs (boot run)

(1) The QnACPU only processes programs which are stored in the inter-
nal RAM. Therefore, programs stored in the memory card must be
booted (read) to the internal RAM using the boot file name designated
by a parameter setting. The files designated with parameters are
booted (read) from the memory card to the internal RAM according to the
order specified in the boot file.

[Boot file setting window]

LBoot File Settingl Lahel =
Program Type T2 Src |IR Dest

Drive Drive

QTN UHA I NI

AAAAAAAAAANAN
VVVVVV VIV VY Y
Y T e P e e e
St b et e b b et o e d

]
]
3
1
1
1
]
1
1
1
1
1
X

R et
et b b ot kA rd o d hd ek

\— Interan! RAM drive No.
designated here

/

Memory card drive No.
designated here

Boot file designated here

(2) File additions from the memory card to the internal RAM, changes,
and deletions are impossible while the QnACPU is in the RUN status.
To execute these operations, STOP the QnACPU, designate the
desired boot file using the parameter, then rest the CPU. After
completion of reset, RUN the CPU.

QnACPU
B r ing procedur
Memaory coed .

internal RAM 1. Designate (by parameter
F‘“;"“;“‘I setting) the file to be
! rogram L [0 transferred.
bemmm e m - G T Program A | ©
| et 7 R il -
X Program B 1 2. Reset the QnACPU.
Lo e L - oo 4
| S S S i . . i
. Program C : Program C 3. Designated file is trans-
Lo E Lo e o a ferred from the memory

card to the internal RAM.

4, Execution of the trans-
ferred file begins.

2. QnACPU FILES

24 File Types & Storage Destinations of Files Managed by QnACPU

(1)

MELSEC-QnA

File types & storage destinations of files managed by QnACPU

Files which can be stored in the internal RAM, and those which can be
stored in the memory card are determined according to the file type.

Storable files and their storage destinations are shown in Table 2.3
below.
An memory card may or may not be necessary, depending on the type
of file to be stored in the QnACPU.

Table 2.3 Files & Storage Destinations in QnACPU

Storage Drives *1
Item File Type File Name *4 Restrictions Reference
0 1 2 3 4

For Parameter Frrrmeer QPA O O O O O |1 file per drive | Section 5

Program | Sequence program/ | s ppG | @7 | 0% | 0% | 0% | O Section 3
Device comment rrrrwrer QCD o%| o O O O | Max. 124 files User's *3
Device initial values Frwmerr QDI O O O O O | Max. 124 files Section 4.13

For devices File registers e QDR X O A O A | Max. 124 files Section 4.7
Simulation data Frrweeer QDS X O X O X User's *3
Local device rrrrwrer QDL X (0] X O X |1 file per CPU Section 4.13
Sampling trace data e QTS

s:gugging Status latch data e QTL X o X o X User's *3
Program trace data rrrrreer QTP
SFC trace data rrerrer QTR

:i%rg?:slgs Fault history data Frewere QFD X o X o X User's *3

1) *1: Symbols used in the above table are explained below.

Symbol Meaning
® Must be stored.
O Stored when required.
X Cannot be stored.

A

When flash memory is used: File reading only (writing is impossible).
When E2PROM is used: Writing is possible by EROMWR instruction.

2) *2: QnACPU pkocesses programs stored in drive 0 (internal RAM).

Programs stored in drives 1-4 must be booted to the internal RAM in order

to be executed.

3) *3: User's Manual of the CPU module used.

2. QnACPU FILES

MELSEC-QnA

4) *4: The file name configuration is as follows:

sxxkxsrs QPR

e

{—' Extension

File name

Since files are designated at the peripheral device with the file name and file typs,
there is no need to think about the extention.

The peripheral device converts the file type of the designated file to the extention
before writing it to the QnACPU.

5) *5: Device comments stored at drive 0 cannot be used at the comment instructions
(LEDC, etc.) of sequence programs and SFC programs.

2. QnACPU FILES

MELSEC-QnA

2.5 Program File Configuration

Program files consist of a file header, an execution program, and steps se-
cured for write during RUN.

As shown below, the size of a program stored in the QnACPU includes all
the above components.

File header i
"Number of steps”
Execution displayed at . o
program programming Number 9f steps" displayed
when writing to QnACPU
Steps secured occurs (1k step units)
for write during
... RUN____|
o File header : The file name, file size, and file creation data, etc.,

are stored in this area.
The file header size ranges is from 34 to 35 steps
(136 to 140 bytes). (Default: 34 steps. When setting
the retentive timer, it has 35 steps.)
o Execution program : The created program is stored in this area.
: 1 step = 4 bytes.
e Steps secured for : This area is used when write during RUN that
write during RUN increases the number of steps is executed at a
peripheral device.
Default value = 500 steps (2000 bytes).
The number of steps can be changed using the
write options at the peripheral device’s PC menu.

Default value

{Urite Optionl

. # of Steps for Urite During Run[GEEEN:) EXLIY
2. Device Comment 1. Range 1.¢{») Entire Range
2.¢) Specify Detail Range
2. Cmt Fmt 1.(») CPU Fmt <([321Char per Comment?>
2.¢ > PDT Pnt <Saves Only
[Exccute (V) RREETTING bl

Space:Select Esc:Close

During programming at the peripheral device, the total of the file header
size and the number of execution program steps is displayed as the “num-
ber of steps used."

[Ladder readout screen]

p 5/Edit 6/Monitor 2/Uindosys 8/0ption Alt:iMenu
328tep C:SAMPLENSAMP— <Ins

s} \\ <y48 >

{END I
\ ' "Number of steps used"

display

Program storage capacity differs depending on the memory where programs are stored.

Memory Program Capacity Unit
Internal memory 4096 bytes (1k steps)
Memory card 512 bytes

2-11

2. QnACPU FILES

2.6 File Operation and File Handling Precautions
2.6.1 File operation

Using the "online" function of the GPP peripheral device, the file operations
shown in Table 2.4 below are possible with regard to files stored in the in-
ternal RAM and memory cards.

However the available file operations will vary according to the presence or
absence of an entry code (registered by peripheral device), the QnACPU
"write protect" switch setting status, and the QnACPU RUN/STOP status.

Table 2.4 File Operations from Peripheral Device

Operation
File Operation Enabled/Disabled *1 Operation Description
A B C D
File list) A? o A list of files stored in memory is displayed.
Read o A2 o o |Files are read from memory.
Write *4 A A X A" | Files are written to memory.

Program writing is executed during the QnACPU

Program writing during RUN status A2 A™ X o RUN status.

Rename A? | A% | x | A® |The name of a file stored in memory is changed.
Copy A% | A X A | Afile stored in memory is copied.

Delete A2 | A" X x | A file stored in memory is deleted.
— % | a7 | x| x |Momony s whchatg no ngecontuaus r
PC memory format ‘ A% | A X x | Memory formatting is executed.

1) *1: The codes (A, B, C, D) used at the "operation enabled/disabled” item in the
above table are explained below.

¢ Operation enabled/disabled

Code Description Reference

A When "“write prohibit" entry code is
registered at CPU

B When *read/write display prohibit"

entry code is registered at CPU User's Manual of the CPU

module used

c When the CPU’s "system protect" (Detailed information)
switch is ON

D When a CPU RUN/STEP-RUN status is
in effect

» symbols used in table

Symbol Description
o Execution enabled ,
A Execution enabled with some restrictions
X Execution disabled

2. QnACPU FILES

2) *2: Execution of parameter and program files is only possible when the entry codes
match.

3) *3: The status is "operation disabled® (X) in the following cases:
* Parameter program + program file
e When a new file is created during the RUN status
(When the same file as the file being copied does not exist at the copy
destination)
¢ When copying to drive D during the RUN status

4) *4: In order to secure a contiguous area for the data of a designated file, a file shift
mayoccur if the file size is increased.

5) Reading/writing to the memory card’s E2PROM is possible in the same manner as
at its RAM.
However the processing time is longer when writing to the E2PROM than it is when
writing to the RAM.

6) File cannot be written directly from the peripheral device to the IC memory card’s
flash ROM. To do this, a memory card reader/writer set must be installed at the
GPP function peripheral device, and writing executed via that reader/writer.

2. QnACPU FILES

MELSEC-QnA

2.6.2 File handling precautions

Precautions regarding the handling QnACPU files are discussed in this sec-

tion.
(1)
(a)
(b)
Program A
8k steps
Memory size:
28k steps Program B
6k steps
Program
Program C Bis
6kgsteps deleted.

File contiguousness in the memory

Internal RAM and memory card files are basically arranged in a
contiguous manner.
However, following a number of file deletions and writing operations,
the amount of contiguous vacant space may be reduced to the point
where files can no longer be stored, even though the overall vacant
space is adequate.

When the overall vacant space exceeds the size of the file to be
written, the "PC memory organize” function (the GPP function pe-
ripheral device online mode) can be executed to gather all the
non-contiguous vacant space into a single contiguous area.

Example 1: When writing to the QnACPU internal RAM is
impossible:
To simplify the explanation, system files and
parameters, etc., are excluded.

Program D Program E
writing writing
enabled disabled *1
Program A Program A Program A
8k steps 8k steps 8k steps
Program D Program D | (4k steps)
Write Program E i a . (2k steps)
request writin
Program C for Program C reque%t Program C
6k steps program D 6k steps 6k steps
- Program E =

(4k steps)

Overall

vacant 8k steps 14k steps 10k steps 10k steps
space

Contiguous

vacant 8k steps 8k steps g’; :::Pi gl; ?(gp:
space 6k steps p p

1) *1: Writing to the internal RAM is impossible because the amount of contiguous
vacant space is only 8k steps.

2. QnACPU FILES

MELSEC-QnA

Example 2: When the "PC memory organize” function is executed:
When the internal RAM condition is as shown in
Example 1 on the previous page, the "PC memory
organize" function can be executed to secure 10k steps

of contiguous vacant space ("*" in fig. below).
Program E
writing
enabled
Program A Program A Program A
8k steps 8k steps 8k steps
P D
g Program D Program D
Program C ‘oli’gCa:;tZeg:ory Program C ‘I;rr:)t?r:;m E Program C
6k steps function 6k steps 6k steps
executed
Program E
10k steps
Overall
vacant 10k steps 10k steps Ok steps
space
Contiguous
vacant 8k steps 10k steps Ok steps
space
(2) Power OFF (or reset) during program operation

(a) If power is switched OFF (or a reset occurs) during a file operation
which will not cause a file shift, the memory data will not be lost.

(b) If the QnACPU battery backup is in effect, the memory data will not
be lost if the power is switched OFF (or reset occurs) during a file
operation which causes a file shift.

Files stored in the memory card will not be lost unless the memory
card is removed from the QnACPU while the power is OFF.

POINTS

(1) The following file operations can cause a file shift:

¢ File size change
¢ PC memory organize function
s New file creation

(2) If a power OFF occurs during the above operations, the data up to
the power OFF will be stored in the QnACPU internal RAM, and will
be restored when power is switched ON again. A battery backup is
required in order to save internal RAM data is this manner.

2. QnACPU FILES

MELSEC-QnA

(3) Write during RUN when program file size is increased

(a) The QnACPU program file size is the created program space plus
the steps secured for write during RUN. When write during RUN is
executed using the peripheral device’s GPP function, the program
size should not exceed the file space secured when initial program
file writing occurred.

(b) Write during RUN is impossible if the size of an edited program
exceeds the program file space secured when initial program file
writing occurred.

» [f afile's size is likely to be increased by write during RUN, set
the steps secured for write during RUN in advance at the pe-
ripheral device.

o If the QnACPU is stopped, writing is possible even if the file
size has been increased.

(4) Simultaneous access of a single file from multiple peripheral devices

(a) The QnACPU permits a file which is being accessed by an RS-422
connected peripheral device to be accessed simultaneously by an-
other peripheral device which is connected via a network or serial
communication module.

3. SEQUENCE PROGRAM CONFIGURATION &
EXECUTION CONDITIONS

3. SEQUENCE PROGRAM CONFIGURATION & EXECUTION CONDITIONS

Sequence programs and SFC programs can be executed at the QnACPU.
This chapter describes the sequence program configuration and execution
conditions.

SFC programs are not described in this manual.

For details regarding SFC programs, refer to the QnACPU Programming
Manual (SFC).

3.1 Sequence Program
(1) Definition of sequence program

(a) A sequence program is created using QnACPU sequence instruc-
tions, basic instructions, and application instructions, etc.

Sequence instruction

X0 MO K100

— | <10
10

— | {30
X1 /

—] } [BIN K4X0 Do]—

X41 Application instruction

—-—H———[FROM HS KO D10 K1]—

{b) There are 3 types of sequence program: main routine programs,
sub-routine programs, and interrupt programs.
For details regarding these programs, refer to the following sec-
tions of this manual:
+ Main routine programs : Section 3.1.1
» Sub-routine programs : Section 3.1.2
» Interrupt programs : Section 3.1.3

Basic instruction

File A

——rer H

3. SEQUENCE PROGRAM CONFIGURATION &
EXECUTION CONDITIONS

1) For details regarding the QnACPU sequence instructions, basic instructions, and
application instructions, refer to the "QnACPU Programming Manual {Common
Instructions)”.

MELSEC-QnA

(2) Sequence program writing format

Programming for sequence programs is possible using either the relay
symbolic language (ladder mode), or the logic symbolic language (list
mode). :

(a) Relay symbolic tanguage

e The relay symbolic language is based on the relay control lad-
der.
Programming expressions are similar to the relay control se-
quence ladder.

* Relay symbolic language programming occurs in ladder block
units.
A ladder block is the smallest unit of sequence program proc-
essing, with the ladder beginning from the left bus and ending
at the right bus.

Left bus
7 S 0 .
Lo [(20)_}y—R;gm bus
G/,:"if"'iz""ii """""""""""""""""" H
Step Nd&. :ZL—I; It w 21 !
: ‘
1 1
. {v22 ¥ b Ladder biocks
: :
1 1
L (=
I S J n
L8 (s
1 D)
A l i
1
0 ¥
* X0 to X5: indicate inputs.
Y20 to Y24: indicate outputs.

Fig.3.1 Ladder Block
(b) Logic symbolic language (list mode)
The logic symbolic language uses dedicated instructions instead of

the contact symbols, coil symbols, etc., used in the relay symbolic
language.

3. SEQUENCE PROGRAM CONFIGURATION &
EXECUTION CONDITIONS

(c) Program processing

Sequence programs are processed in order, beginning from step 0
and ending at the END instruction.

Processing of relay symbolic language ladder blocks begins from the
left bus, and proceeds from left to right. When one ladder block is
completed, processing proceeds downward to the next ladder block.

[Relay symbolic language] [Logic symbolic language]
Left to right
L ¢ i x0 —{)
1 9
TEEE W
0 Hb— ——{— (10 2w x2)]
® 3 AND x3 @
X2 n’ (=) . Exscuted in 4 ORB ———(5)
Top to bottom | Hi— order, beginning 5 OR X4 - (8)
o fromstepOand | ; Mo o e
H ending at the s a0 g —®
- END instruction | 3 st vz ——(10)
10 [(BID) ylo 20—)
* Numbers (1) - {11) indicate the processing I
order of the sequence program. Step No.

Table 3.2 Sequence Program Processing

3. SEQUENCE PROGRAM CONFIGURATION &
EXECUTION CONDITIONS

3.1.1 Main routine program
(1) Definition of main routine program

(a) A main routine program is a program which begins from step 0 and
ends at the END/FEND instruction.

(b) The main routine program execution begins from step 0 and ends at
the END/FEND instruction.

1) If only one program is being executed, processing will begin from
step 0 again after the END/FEND instruction is processed.

Step 0
P o Program execution
Main routine
program Returns to step
0 when only one
/—— program Is being
executed.
END/FEND END/FEND
END
processing

2) If multiple programs are being executed, processing which oc-
curs after the END/FEND instruction varies according to the
designated execution conditions. (See item (2) below)

(2) Execution conditions for main routine programs

If multiple programs are being executed, the following four types of
execution conditions can be designated (by program settings in the
parameters) according to the application in question.

» [nitial execution program: See Section 3.2.1.
e Scan execution program: See Section 3.2.2.
+ Low-speed execution program: See Section 3.2.3.

+ Standby program: See Section 3.2.4.

3. SEQUENCE PROGRAM CONFIGURATION &
EXECUTION CONDITIONS

3.1.2 Sub-routine programs

Sub-routine
program

(2)

3)

<

(1) Definition of sub-routine program

(a) A sub-routine program is a program which begins from a pointer
(PZ3) and ends at a RET instruction.

(b} A sub-routine program is executed only when called by a CALL (P)
instruction from the main routine program.

Sub-routine program application

(a) The overall step count can be reduced by using a sub-routine pro-
gram as a program which is executed several times in one scan.

(b) The step count of a constantly executed program can be reduced by
using a sub-routine program as a program which is executed only
when a given condition is satisfied.

Sub-routine program management

Sub-routine programs are created after the main program (after FEND
instruction), and the combination of main and sub-routine programs can
be managed as one program.

Sub-routine programs can also be managed as separate, discrete pro-
grams (standby programs). (See Section 3.2.4 for details regarding
standby programs). '

(a) When created after the main program

» A sub-routine program is created between the main program’s
FEND and END instructions.

» Because there are no restrictions regarding the order in which-
sub-routine programs are created, there is no need to set the
pointers in ascending order when creating multiple sub-routine
programs.

+ Either a local pointer or a common pointer may be used. *

Program A QnACPU

Memory card/
internal RAM

Main routine N
program L Write Program A
file

FEND

PO

PB

P1

o
Hﬂa’
H
__—[Rgr
e
______{Rg'

2 Y 9" Y 7Y

END

3-5

3. SEQUENCE PROGRAM CONFIGURATION &
EXECUTION CONDITIONS

1) *: See Section 4.9 for details regarding local and common pointers.

MELSEC-QnA

2) See Section 4.8 for details regarding sub-routine program nesting.

(4) Using local devices used by the file where a sub-routine program is
stored
It is possible to use local devices that are used by the f{ile where a
sub-routine program is stored when executing a sub-routine program.
Whether or not such local devices are used is set by special relay
"SM776".

(a) Switching over local devices by setting ON/OFF for a special relay

SM776

OFF Executes calculation by the local devices that are used by the file
where the sub-routine program was called

[Operation at "SM776 : OFF" when the function version is supported or
not supported]

File name: DEF

File name: ABC (Standby program)
”‘)I(Execution of the sub-rou- | P100 H -
X2 tine program : Lr jmomomommeeeeee
H ! Sub-routine !
; B
™ RET
I

Read/write of the
Local devices used by the local devices Local devices used by the
file name: ABC file name: DEF

[Operation at "SM776 : ON" when the function version is supported]
File name: DEF

File name: ABC (Standby program)
X0 Execution of the sub-rou- | P1o0H -
_){(2 CALLIPTO0 tine program A il ==
] 1
H INCP JD0] | Sub-routine !
> program 1
$ Read/write of the e :
focal devices RET
—
Local devices used by the L, | Local devices used by the
file name: ABC file name: DEF

3. SEQUENCE PROGRAM CONFIGURATION &
"EXECUTION CONDITIONS

(b) Cautions

o [f SM776 is ON, the local device data is read when the sub-rou-
tine program is called and the local device data is saved after
the execution of the RET instruction.

Accordingly, scan time is elongated by the time as shown below
when a sub-routine program is executed once with the setting of
"SM776: ON". o

s Q2ACPU(S1), :560+1.3"*
Q2ASCPU(S1) (Number of words of a local device) [us]

e Q3ACPU :425+1.0"
(Number of words of a local device) [us]

* Q4ACPU, 1220+ 0.8*

Q2ASHCPU(S1) (Number of words of a local device) [us]

* ON/OFF setting of SM776 is possible in unit of QnACPU or
Q2AS(H)CPU.
Setting in unit of file is not possible.

» |f the ON/OFF setting of SM776 is changed while a sequence
program is executed, the control is made according to the infor-
mation after change.

3. SEQUENCE PROGRAM CONFIGURATION &
EXECUTION CONDITIONS

MELSEC-QnA
3.1.3 Interrupt programs
(1) Definition of interrupt program

(a) An interrupt program is a program which begins at the interrupt
pointer (I:2)*, and ends at the IRET instruction.

(b) Interrupt programs are executed only when an interrupt factor oc-
curs. *

(2)' Interrupt program management

Interrupt programs are created after the main program (after the FEND
instruction), and the combination of main and sub-routine programs can
be managed as one program.

Interrupt programs can also be managed as separate, discrete programs
(standby programs). (See Section 3.2.4 for details regarding standby
programs). However, the same interrupt program pointer number cannot
be used more than once in the program being executed by the QnACPU.

(a) When created after the main program

e An interrupt program is created between the main program’s
FEND and END instructions.

 Because there are no restrictions regarding the order in which
interrupt programs are created, there is no need to set the inter-
rupt pointers in ascending order when creating multiple inter-
rupt programs.
Program A QnACPU

Memory card/
internal RAM

Main routine Write

program \ Program A
file

FEND

) —-] }——————<Y1o
——{:IREI’
132 —l {-—————<Yn

Interrupt
program

128 —| }——(Ytz
\ ——[lRET

END

e Y 2 Y $ Y

Interrupt pointer

1) *: See Section 4.10 for detalls regarding interrupt factors and interrupt pointers.

3. SEQUENCE PROGRAM CONFIGURATION &
EXECUTION CONDITIONS

3)

MELSEC-QnA

Executing interrupt programs

(a) In order to execute an interrupt program, IMASK and El instructions
are required to obtain permission for the interruption. *1

« If an interrupt factor occurs prior to an "interruption permitted"
status, the interrupt program for the factor in question will be
executed when an "interruption permitted” status is established.

« If an interrupt factor occurs during a STOP/PAUSE, the interrupt
program for the factor in question will be executed when an
"interruption permitted" condition is established following a return
to the RUN status.

129

Interrupt program example Interrupt program execution

Program execution

(€ fm

— 8 H Interrupt program for
Main -~ "10" activated
I routine ~=~_Interrupt program
program «y | for *129" activated
H
| ——— *¢ _ End of main FEND &
routine program 0
¢ TFEND M
Interrupt
R . program
"I0" interrupt
rogram 129
[IRET prog e
Interrupt
H 1 program
*129" interrupt
rogram X
[IRET prog END !

~r

e H

Fig.3.3 Interrupt Program Execution

(b) When an interrupt factor occurs, the interrupt program with the
interrupt pointer number corresponding to that factor is executed.
However, interrupt program execution varies according to the condi-
tion at that time.

1) When multiple interruptions are designated:

When multiple interrupt programs are activated simultane-
ously, the programs will be executed in order, beginning from
the interrupt program with the highest priority interrupt pointer
number. *2

The remaining interrupt programs remain on standby until proc-
essing of the higher priority interrupt program is completed.

2) When an instruction is being executed:

Interruptions are prohibited during execution of instructions. If
an interrupt factor occurs during execution of an instruction,
the interrupt program will be executed after processing of the
instruction is completed.

3. SEQUENCE PROGRAM CONFIGURATION &

EXECUTION CONDITIONS

MELSEC-QnA

1) *1: For details regarding the IMASK and El instructions, refer to the "QnACPU
Programming Manual (Common Instructions)

2) *2: See Section 4.10 for details regarding the priority ranking of interrupt programs.

3) Interruption during a link refresh:

If an interrupt factor occurs during a link refresh operation, the
link refresh operation is suspended, and the interrupt program
is executed.

10 ms

10 ms

10 ms

10 ms

=

-

=

Interrupt factor

Interrupt program

execution

Link refresh

-

1

execution

Link refresh operation is suspended,

and the interrupt program is executed.

Fig.3.4 Interruption during Link Refresh Operation

4) Interruption during END processing:

i) If an interrupt factor occurs during general data processing at
an END instruction, the interrupt program will be executed
after the general data processing is completed.

i} if an interrupt factor occurs during an END instruction waiting
period during constant scanning, the interrupt program corre-
sponding to that factor will be executed.

(c) See Section 4.6 for details regarding index register processing when
switching to an interrupt program from a scan execution program or
low-speed execution program.

3. SEQUENCE PROGRAM CONFIGURATION &
EXECUTION CONDITIONS

MELSEC-QnA

(4) Program creation restrictions

(a) A device which is switched ON by a PLS instruction in an interrupt
program will remain ON until that interrupt program is executed

again.
X0 X0
[FIS[W0]
END O I0JIRETEND O END O I0JIRET END O
] t
ON 4 3
i
1 t
xo 2F i I ;
{ON :
MO OFF v .
| Switched ON by PLS MO |__ Switched OFF by PLS
instruction at X0 leading MO instruction
edge (OFF—ON)

(b) A "DI" status (interruption prohibited) is established during execution
of an interrupt program.
Do not execute EI/DI instructions in the interrupt program.

{c) Timers cannot be used in interrupt programs.
As timers are used at OUT TC: instructions to update present values
and switch contacts ON and OFF, the use of a timer in the interrupt
program would make a normal time count impossible.

(d) Local devices cannot be used in interrupt programs. (See Section
4.13.1.)

3. SEQUENCE PROGRAM CONFIGURATION &
EXECUTION CONDITIONS

(5)

MELSEC-QnA

(e) When an interrupt program is executed in the middle of measuring such as
scan time and execution time, the time for the program is added to the

measurement time.

Accordingly, once the interrupt program is executed, each value stored to
the special registers below and the monitored values of each peripheral
device will be longer than the case of not being executed.

1) Special registers

¢ SD520, SD521:
¢ SD522, SD523:
* SD524, SD525:
* SD526, SD527:
* SD528, SD529:
* SD532, SD533:
* SD534, SD535:
e SD540, SD541:
e SD542, SD543:
¢ SD544, SD545:

* SD546, SD547:
* SD548, SD549:
¢ SD551, SD552:

Current scan time

Initial scan time

Minimum scan time

Maximum scan time

Current scan time for low speed
Minimum scan time for low speed
Maximum scan time for low speed
END processing time

Constant scan wait time
Cumulative execution time for low speed execution type
programs

Low speed execution time

Scan program execution time
Service interval time

2) GX Developer monitor values
e Execution time measurement
¢ Scan time measurement

¢ Constant scan

Using local devices that are used by the file where an interrupt pro-

gram is stored

It is possible to use local devices that are used by the file where an in-
terrupt program is stored when executing an interrupt program.
Whether or not such local devices are used is set by special relay

"SM777".

(a) Switching over local devices by setting ON/OFF for a special relay

SM777

3-—

OFF Executes calculation by the local devices that are used by the file

e execution of the interrupt progral

11-1

3. SEQUENCE PROGRAM CONFIGURATION &
EXECUTION CONDITIONS

MELSEC-QnA

[Operation at "SM777 : OFF" when the function version is supported or
not supported]

File name: DEF

File name: ABC : (Standby program)
X o HE
Occurrence of _){(2 DECP /4 jmmm e
interrupt ¥ Execution of the in- ! Interrupt '
: ’ H N INCP W. terrupt program 3 program E
t L
t H
\s\\ / ________________ !
IRET
Read/write of the
Local devices used by the local devices Local devices used by the
file name: ABC file name: DEF

[Operation at "SM777 : ON" when the function version is supported]

File name: DEF
File name: ABC (Standby program)
X0 e
Occurrence of _)i(z DECP /4 10 R GRS L e RS
interrupt ¥ Execution of the ! Interrupt !
- N INCP m interrupt program E program i
1 i
e i
$ ‘\ IRET
o} St
Read/wrige of the
Local devices used by the local devices L, | Local devices used by the
file name: ABC file name: DEF

(b) Cautions

e If SM777 is ON, the local device data is read before the inter-
rupt program is executed and the local device data is saved af-
ter the execution of the IRET instruction.

Accordingly, scan time is elongated by the time shown as below
when an interrupt program is executed once with the setting of

"SM777: ON*.
¢ Q2ACPU(S1), :560+1.3*
Q2ASCPU(S1) (Number of words of a local device) [us]
+ Q3ACPU :425+1.0"
(Number of words of a local device) [us]
s Q4ACPU, :2204+0.8*

Q2ASHCPU(S1) (Number of words of a local device) [us]

o ON/OFF setting of SM777 is possible in unit of QnRACPU or
Q2AS(H)CPU.
Setting in unit of file is not possible.

» |f the ON/OFF setting of SM777 is changed while a sequence

program is executed, the control is made according to the infor-
mation after change.

3-12

3. SEQUENCE PROGRAM CONFIGURATION &
EXECUTION CONDITIONS

MELSEC-QnA

3.2 Program Executioh Conditions & Operation Processing

Programs executed by the QnACPU are stored in the CPU’s internal RAM,
or in memory cards.

Programs can be stored in the internal RAM or memory cards as a single
program, or they can be split into separate programs for each control func-
tion.

This permits the programming procedure to be split up among several pro-
gram designers who can design separate programs for each operation.

Control by

t Control by
a single program

multiple programs

Program A
| i it it 3
; Control H Control
: content A : content A
g 4
‘ l
U
\ .
Program B
FTT ST s s s i
: Control ! Control | Separate programs
; content B ! content B registered for each
Loccmmmmme oo g control item

[P PN .
e - —————

Program n

content n

Control i Control
1
1

When an operation is split up into multiple programs, an "execution type"
setting must be designated in the program settings in the parameters.
The QnACPU executes each of the "execution type" programs in their set-
ting order.

There are 4 execution types: initial execution, scan execution, low-speed
execution, and standby.

¢ [nitial execution : This program type is executed once only at
power ON, or when STOP-RUN switching
occurs. (See Section 3.2.1)

s Scan execution : This program type is executed once per scan,
beginning from the scan which follows
execution of the initial execution program.
(See Section 3.2.2)

e Low-speed execution: This program type is executed only when a
constant scan setting is made or when a time is
set for execution of low-speed execution type
programs.

e When a constant scan setting is made, the
program is executed during the surplus time of a
scan execution type program.

» When a time for execution of low-speed
execution type programs is set, the program is
executed during this set time.

(See Section 3.2.3.)

» Standby type : This program is executed only when its
execution is requested. (See Section 3.2.4)

3-13

3. SEQUENCE PROGRAM CONFIGURATION &
EXECUTION CONDITIONS

MELSEC-QnA

[Program setting window]

{Progran Settingilabel 3
Progran Execute

DY I YV RIS
AAAAAAAANANAN

L
VVVYVVVVVYVYY

Execution conditions designated here

File name of execution program
designated here

The program operation steps which occur at power ON or STOP-RUN
switching are shown below.

Power ON, or STOP-RUN
switching

il
N Executed once only at
L power ON or STOP-RUN
execution switching
program

|
l

END processing

|

Scan e Standby ---- Executed only when requested

execution execution

program program

[[)
Executed only when a

Low-speed | | | —-—m-mmmmmmm o e "constant scan” or "low-speed
execution execution program execution
program time period” is designated.

POINTI

(1) Designation of all execution types is not required at the QnACPU.*
Initial execution, low-speed execution, and standby type programs
indicated by an asterisk are used as required.

3. SEQUENCE PROGRAM CONFIGURATION &
EXECUTION CONDITIONS

MELSEC-QnA

3.2.1 Initial execution programs

(1

(2)

(3)

Definition

(a) An initial execution program is executed once only at power ON, or
when STOP-RUN switching occurs.

(b) This program’s execution type is designated as "initial" in the pro-
gram settings parameters.

(c) Inthe same manner as the initial processing for the special function
module, the initial execution program is executed only once, and is
not required in subsequent scans.

Control by a single program When initial execution program is used

Program A
| sttt S hed
1 1
| Initial program | Initial execution
! : program . .
b 4 Operation split into
l an initial execution
program and a scan
Program B ~
e a 9 execution program
1 13
1 Program executed ! § Scan execution
1 at each scan i program

Using multiple initial execution programs

When multiple initial execution programs are used, they are executed
one by one in ascending number order (program settings parameter
setting).

END processing
END processing occurs when all initial execution programs are com-

pleted, and the scan execution program is then executed from the next
scan.

Power ON or STOP-RUN
switching

| 2

Initial execution
program A

program B ascending number order

¥

Initial execution
program n

S B

1
]
!

Initial execution ‘ 1 scan | Executed in "program settings®
1
1
1]

[

I END processing J

! Scan execution !
1 program \

3. SEQUENCE PROGRAM CONFIGURATION &
EXECUTION CONDITIONS

MELSEC-QnA

POINTI

1) *: Instructions with "completion devices" cannot be used in initial
execution programs.

(4) Initial scan time

(a) This is the sum of initial execution type program run time and END
processing time.

If multiple initial execution programs are used, this is the execution time
period in which all those programs are executed.

(b) The QnACPU measures the initial scan time and stores the result in
special registers (SD522, SD523). *1

The initial scan time can therefore be checked by monitoring the SD522
and SD523 special registers.

sps22 | | spses |

[Initial scan times of 1 ms or less
are stored here (unit: us)

Initial scan times of 1 ms or more
stored here (unit: 1 ms)

If the SD522 value is "3", and the SD523 value is "400", the initial scan
time is 3.4 ms.

(5) Initial execution time monitor

(a) This timer monitors initial scan time and has no default value setting.
If such monitoring is desired, designate the timer setting in a 10 ms
to 2000 ms range at the PC RAS settings parameter.

(Setting unit:10ms)

(b) A low-spped execution type program is executed after the execution
of an initial execution type program is completed.
When using a low-speed execution type program, set a time longer
than the sum of the initial scan time and low-speed execution type
program run time.

(c) If the execution time of the initial execution program exceeds this
timer setting, a "WDT ERROR" occurs, and QnACPU operation is
stopped.

POINTSI

(1) *1: The accuracy of the initial scan time stored at the special
registers is = 0.1 ms.The initial scan time count will continue
even if a watchdog time reset instruction (WDT) is executed at
the sequence program.

(2) When a monitor timer setting is designated for the initial execution
time, there will be a 10 ms error in the count value.
Therefore, a monitor timer setting (t) of 10 ms will result in a "WDT
ERROR" if the initial scan time is in the following range:
10 ms <t <20 ms.

3-16

3. SEQUENCE PROGRAM CONFIGURATION &
EXECUTION CONDITIONS

3.2.2 Scan execution programs
(1) Definition

(a) Scan execution programs are executed once per scan, beginning
from the scan which follows execution of the initial execution pro-
gram.

(b) This program’s execution type is designated as "scan" in the pro-
gram settings parameters.

(2) Executing multiple scan execution programs.

When multiple scan execution programs are used, they are executed one
by one, in ascending number order (program settings parameter setting).

(3) END processing

END processing occurs when all scan execution programs are com-
pleted, and execution the begins again from the first scan n execution
program.

END processing (general data processing, link refresh) is possible after
each of the programs by designating a COM instruction at the end of the
scan execution programs.

STOP — RUN,

power ON — RUN
1st scan ole 2nd scan | 3rd scan |_4th scan

l
]
s &

Initial execution program]

END processing

0 END 0 END 0 END
Scan execution program A

o] END 0 END 0
Scan execution program B)

0 END, 0 END,
Scan execution program C

Scan time

(4) Constant scan setting *1

When constant scanning is designated, the scan execution program is
executed at each designated constant scan period.

1) *1:The "constant scan" function executes the scan type program repeatedly at
regular intervals. For details, refer to the User’s Manual of the CPU module used.

3. SEQUENCE PROGRAM CONFIGURATION &
EXECUTION CONDITIONS

MELSEC-QnA

POINTI

1) See Section 4.6 for details regarding index register processing
when an interrupt program is executed while a scan execution
program is in progress.

(5) Scan time

e The "scan time" is the total time required for scan type program
execution and END processing.
If multiple scan execution programs are used, the "scan time" is the
total time required to execute all the programs.

e The scan time "present value", "minimum value”, and "maximum
value" are measured at the QnACPU, and the results are stored in
special registers (SD520, AS521, SD524-SD527). *

The initial scan time can therefore be checked by monitoring the
SD520, SD521, SD524-SD527 special registers.

Present value SD520 SD521
Minimum value SD524 SD525
Maximum value SD526 SD527

[— Scan times of 1 ms or less

are stored here (units: ps)

Scan times of 1 ms or more
stored here (units: 1 ms)

If the SD520 value is "3", and the SD521 value is "400", the initial
scan time is 3.4 ms.

(6) WDT (Watchdog timer)

This is the timer which monitors the scan time, and its default setting is
200 ms. '
This WDT setting can be designated in a 10 ms to 2000 ms range in the
PC RAS settings parameters. (Setting units: 10 ms)

If a low-speed execution program is used, a WDT setting value should
be designated which is greater than the scan time plus the execution
time of the low-speed execution program.

If the scan time (execution time for scan execution program + low-speed
execution program) exceeds the WDT setting value, a "WDT ERROR"
occurs, and QnACPU operation is stopped.

POINTSl

(1) *1: The accuracy of the scan time stored at the special registers is
+ 0.1 ms. ’
The scan time count will continue even if a watchdog time reset
instruction (WDT) is executed at the sequence program.

(2) The WDT measurement error is 10 ms.
Therefore, a WDT setting (t) of 10 ms will resuit in a "WDT ERROR"
if the scan time is in the following range: 10 ms <t < 20 ms.

3. SEQUENCE PROGRAM CONFIGURATION &
EXECUTION CONDITIONS

MELSEC-QnA

3.2.3 Low-speed execution programs

(1)

(2)

(3

Definition

(a) Low-speed execution programs are executed only during "constant
scanning surplus time" or during the period designated for low-speed
execution program execution.

e For a constant scan time with enhanced control accuracy, desig-
nate a constant scan time setting at the PC RAS parameters.
(Setting range: 5-2000 ms, setting units: 5 ms)

e To secure execution time for low-speed execution programs at
each scan, designate a low-speed execution program execution
time setting in the PC RAS parameters. (Setting range: 1-2000
ms, setting units: 1 ms)

+ In order to execute a low-speed execution program, one of the
above settings ("constant scan time " or "low-speed execution
program execution time") must be designated.

(b) The execution type of the low-speed execution program is desig-
nated as "low-speed" in the program settings parameters.

(c) The low-speed execution program type is used for programs which
do not require execution in each scan, for example programs for
printer output.

Executing multiple low-speed execution programs

When multiple low-speed execution programs are used, they are exe-
cuted one by one, in ascending number order (program settings parame-
ter setting).

Low-speed execution program execution time at 1 scan

(a) If all the low-speed execution program operation is completed within
one scan and there is surplus time, the processing executed after
that depends on the setting status of special register SM330 and the
execution condition for low-speed execution type programs.

e Asynchronous method (SM330 = OFF)
: Method in which low-speed execution type program opera-
tion is continued in the surplus time.

s Synchronous method (SM330 = ON)
: Method in which even if there is surplus time, low-speed
execution program operation is not continued, and opera-
tion starts again from the next scan.

Operation method
for low-speed execu-
tion type programs

SM330 Execution condition for low-speed execution type programs

setting
status When “constant scan time" is set

When "low-speed execution program
execution time" Is set

The low-speed execution type The low-speed execution type program is
Asynchronous method | OFF program is re-executed . re-executed 2.

Constant scan waiting time is Scan execution type program operation.
Synchronous method | ON generated °. is started 4.

3. SEQUENCE PROGRAM CONFIGURATION &
EXECUTION CONDITIONS

MELSEC-QnA

*1 If a "constant scan time" has been designated, the low-speed
program will be executed during the constant scan’s surplus
time.

Therefore, the low-speed execution program’s execution time
varies from scan to scan.

As the low-speed execution program will not be executed at all
if the constant scan’s surplus time is 2 ms or less, a "constant
scan time" setting should be designated which provides a sur-
plus time of more than 2 ms. :

*2 If a "low-speed execution program execution time" has been
designated, the low-speed execution program will be executed
in accordance with that time setting. Therefore, the scan time
will vary from scan to scan.

*3 If a "constant scan time" has been designated, the surplus
time after completion of low-speed END processing is waiting
time, and execution of a scan execution type program starts
when the constant scan time has elapsed.

Constant scan waiting time
= (constant scan setting time) — (scan time)

— (low-speed scan time)
This means that the scan time is constant in each scan.
However, if the surplus time after the constant scan is less
than 2 ms, low-speed execution type programs cannot be exe-
cuted. If using a low-speed execution type program, set the
constant scan time so that the surplus time is 2 ms or longer.

*4 If a "low-speed execution program execution time" has been
designated, scan execution type program operation is started
ignoring the surplus time after completion of low-speed END
processing.

Surplus time in low-speed program execution time

(ignored)

= (Set time for low-speed program execution time)
— (low-speed scan time)
This means that the scan time differs in each scan.

(b) i a low-speed execution program cannot be processed within con-
stant scan surplus time or within the low-speed execution program
execution time, program execution is temporarily stopped and the
remainder of the program is executed in the next scan.

POINTSI

(1) See Section 4.6 for details regarding index register processing
when switching from a scan execution program to a low-speed exe-
cution program occurs.

-(2) See Section 4.6 for details regarding index register processing
when an interrupt program, is executed while a low-speed execu-
tion program is in progress.

(3) The "low-speed execution program execution time" setting should
be such that the [scan time] + [low-speed execution program execu-
tion time] sum is less than the WDT setting value.

(4) The COM instruction cannot be used in low-speed programs.

3-20

3. SEQUENCE PROGRAM CONFIGURATION &

U USSR IR Ep PRSI I IO PIIPI PIEPEEpEpS P ———————— S U PSRRI B

EXECUTION CONDITIONS

- Asynchronous method
(1) "Constant scan time" setting

The low-speed execution program operation which occurs under the following conditions is

illustrated below.

+ Constant scan time : 60 ms

* Total scan execution program time : 40 ms to 50 ms

« Execution time of low-speed execution program A : 10 ms

s Execution time of low-speed execution program B : 30 ms

s END processing : 0 ms (0 ms is used to simplify the illustration)

¢ Low-speed END processing : 0 ms (0 ms is used to simplify the illustration)
END END END END END
processing processing processing processing processing

MELSEC-QnA

Scan execution program

Low-speed execution program A

Low-speed execution program B

low-speed scan time (165 ms)

low-speed scan
time (130 ms)

5ms
1
i
1
i

(2) "Low-speed execution program execution time” setting
The low-speed execution program operation which occurs under the following conditions is illustrated

below.

0 60 i 120 i 180 | 240 1 300 (ms)

[N T N T TN I I T U T O N T OO0 SO N N N O

B I Tt 1 A O I O O Y B
1 1] I 1

1 1 1 1 I 1l i ' I 11

1 1 13 i}] 1 1 I 1 L1

: 40 ms ; ; 45 ms ; : 40 ms : : 40 ms : : 50 ms : ; 40 ms

I - 1 1 1 lé 1

i

i

: J0 ms 10 m S ms %ms

1

| v

' 10 ms 15 ms 5ms 20 ms 5 ms

' H

1

H

1

1

1

L

¥4

low-speed END
processing

low-speed END
processing

¢ Low-speed execution program execution time : 30 ms
* Total scan execution program time : 40 ms to 50 ms
¢ .Execution time of low-speed execution program A: 10 ms
e Execution time of low-speed execution program B : 30 ms
» END processing : 0 ms (0 ms is used to simplify the illustration)
* lLow-speed END processing : 0 ms (0 ms is used to simplify the illustration)
END END END END END
processing processing procelssing processing processing
0 40 115 185 255 335(ms)
(N O 0 AN AN N AN NS N S N [SCIN JONY A N N (L N N O (N S U NG O AL
]lllll]ll!ll:llllIl|:lll|||l:l||l[llI:II
1 :] 1 1 1
: ; ' Oms | 0 ms | 50 !
40 ms 45 ms ms ms
Scan execution program } i |] b — % !
! !
1
I 10 ms 10 ms 10 ms
3 \ 10 ms
Low-speed execution program A H
1
! v 5
: 20 ms 10 msi0 ms 20 ms 30 ms
Low-speed execution program B | H H '_! !
1
: low-speed scan | low-speed scan , low-speed scan |
't time (125 ms) 1 time (80 ms) 1 time (80 ms) 1
1

low-speed END
processing

] 1
low-speed END
processing

T

low-speed END
processing

3. SEQUENCE PROGRAM CONFIGURATION &
EXECUTION CONDITIONS

MELSEC-QnA

= SYNCATONOUS METROMG -==-====== o m o mmoooooe 1
(1) "Constant scan time" setting

The low-speed execution program operation which occurs under the following conditions is
illustrated below.

low-speed scan time (165 ms) fow-speed scan time (185 ms)

o Constant scan time :60ms
» Total scan execution program time : 40 ms to 50 ms
¢ Execution time of low-speed execution program A : 10 ms
» Execution time of low-speed execution program B : 30 ms S
o END processing : 0 ms (0 ms is used to simplify the illustration)
s Low-speed END processing : 0 ms (0 ms is used to simplify the illustration)
END END END END END END
processing processing processing processing processing processing
| | | | b
] ' 60 120 180 240 | 300 1 (ms)
SN N NN N NN N S N N N L A Y N O A I N [O S5O N S S S I |
[T 111 l T : T [| L] | T I [| 1 | [{ I | 3R] | T
! : 1 [! 1 1 1 Pl 1
1 i i 1 ' 1 1 i 1 [1
. ' 40 ms ! 45 ms ' 40 ms ! I 40ms ! j S0ms 44 4Dms)
Scan execution program } |} | | |} | i | |
1
1
Low-speed execution program A 1
I
1
' 10 ms 15 ms 5 ms 10 ms 10 ms 10 ms
Low-speed execution program B ! H
1
, ‘ 15 ms L
1
t I 1
1] !
i i i
T T
low-speed END low-speed END
processing processing

(2) "Low-speed execution program execution time" setting
The low-speed execution program operation which occurs under the following conditions is illustrated

below.
* Low-speed execution program execution time : 30 ms
¢ Total scan execution program time : 40 ms to 50 ms
+ Execution time of low-speed execution program A: 10 ms
* Execution time of low-speed execution program B : 30 ms
e END processing : 0 ms (0 ms is used to simplify the illustration)
¢ ‘Low-speed END processing : 0 ms (0 ms is used to simplify the illustration)
END END END END END
processing processing processing processing processing
0 40 115 165 235 295 {ms)
I S N D U S N D T N N I IS O O A N L (N [SO UL O SN N A O |
' 1T : T [T 1 11 I:! L I:I] LR I:| LI l:] VT
1 1] 1 | t
! ! ' I | t
' 40 ms ! 45 ms 40 ms | 40 ms L 50 ms) L
Scan execution program } | } | | | f LI 1 T
i { |3 |
| { :
. ' 10 ms 10 ms 10 ms
Low-speed execution program A t H
i
¥ v
; 0 ms 10 ms 20 ms 10 ms 20 ms
Low-speed execution program B 1 [— - —
! I]
: fow-speed scan N low-speed scan '
1 time (125 ms) ! time (120 ms) I
i T o
low-speed END low-speed END
processing processing

gy gy gy g gy U UUp Gy Ry g g g g e it e |

e e e et e e e e e e i i 1 ot o e T s e T o e o O K O o S S A 8 o S 42 e e e e e e e L R e e R e e o e S e e

3. SEQUENCE PROGRAM CONFIGURATION &
EXECUTION CONDITIONS

(4) END processing

MELSEC-QnA

Low-speed END processing occurs after all the low-speed execution.
programs have been executed. Low-speed processing includes the fol-

lowing items:

+ Low-speed execution program special relay/special register setting.

» Low-speed execution program write during RUN.

o Low-speed scan time measurement.

» Low-speed execution program watchdog timer resetting.

When low-speed END processing is completed, execution of the low-
speed execution programs begins again from the first program.

POINTl

(1) During execution of low-speed execution programs, the "constant
scan" time may deviate by the amount of the [maximum instruction
processing time] + [low-speed END processing time].

(5) Low-speed scan time

(a) The "low-speed scan time" is the total time required for low-speed
execution program execution and low-speed END processing.
If multiple low-speed execution programs are used, the "low-speed
scan time” is the total time required to execute all the programs, plus

the low-speed END processing time.

(b) The low-speed scan time is measured by the QnACPU, and the result
is stored in special registers (SD528-SD535). *1
The low-speed scan time can therefore be checked by monitoring

the SD528-SD535 special registers.

Present value SD528 SD529
Initial value SD530 SD531
Minimum value SD532 8D533
Maximum value SD534 SD535

|— Scan times of 1 ms or less

are stored here (units: ps)

Scan times of 1 ms or more
stored here (units: 1 ms)

If the SD528 value is "50%, and the SD529 value is "400", the

low-speed scan time is 50.4 ms.

3. SEQUENCE PROGRAM CONFIGURATION &

EXECUTION CONDITIONS
MELSEC-QnA

(6) Low-speed execution time monitor

The execution period of the low-speed execution program can be moni-
tored by this timer (there is no timer default setting). If such monitoring
is desired, designate the timer setting in a 10 ms to 2000 ms range at
the PC RAS settings in the parameter mode (Setting units: 10 ms)

If the execution time of the low-speed execution program exceeds this
timer setting, a "PRG TIME OVER" error occurs (QnACPU operation is
not stopped). :

POINTS|

(1) *1: The accuracy of the scan time stored at the special registers is
+ 0.1 ms.
The scan time count will continue even if a watchdog time reset
instruction (WDT) is executed in the sequence program.

(2) The low-speed execution time measurement occurs at low-speed
END processing. Therefore a PRG TIME OVER error will occur if
the low-speed execution monitor time (t) is designated as "100 ms",
and the measured low-speed scan time (at low-speed END process-
ing) exceeds 100 ms.

3. SEQUENCE PROGRAM CONFIGURATION &
EXECUTION CONDITIONS

MELSEC-QnA
3.2.4 Standby programs
(1) Definition
(a) Standby programs are programs which are executed only when
requested.
(b) Standby programs are used for the following applications.
1) Placing programs in the library
Sub-routine and interrupt programs are converted to standby
programs which are managed separately from the main pro-
gram.
2) Changing the program setup
Main routine programs are registered as standby programs,
with required programs then being converted to scan execu-
tion programs for execution. Programs which are not required
are converted to standby programs.
(2)- Placing programs in the library

(a) Placing programs in the library

1) This application is used to manage sub-routine and interrupt
programs separately from the main routine program.
Multiple sub-routine and interrupt programs can be created for
a single standby program.

END

processing

T

Scan execution program

Sub-routine program

Interrupt program

Scan execution program

Main routine
program

P100 Sub-routing

program

10 Interrupt
program

T~

Scan execution program

Main routine
program

Standby program

P100 Sub-routine

program

10 Interrupt
program

2) When standby program execution is completed, processing re-
turns to the program which was active before the standby pro-

gram was executed.

The operation which occurs when a standby program’s sub-rou-
tine and interrupt programs are executed is shown below.

CALL P100
instruction

executed END

4

processing

Interrupt factor

occurrence

-

END
processing

|

b
00 RET
—

10 IRET

1

3. SEQUENCE PROGRAM CONFIGURATION &

EXECUTION CONDITIONS

MELSEC-QnA

(3) Changing the program setup

(a) This function can be used to create and execute programs for all

systems.

Programs designated by parameter setting as "standby" programs
can be converted to scan execution programs and executed in a
sequence program. :

The following instructions are used by the QnACPU to convert a
program’s type:

1) PSCAN : Converts a standby program to a scan execution

2) PLOW

program.

: Converts a standby program to a low-speed execution
program.

3) PSTOP : Converts a scan execution program or low-speed exe-

cution program to a standby program.

4) POFF : Converts a scan execution program or low-speed exe-
cution program to a standby program.
(Switching to the standby program takes place after
output is turned OFF.)
. Execu?ed
Instruction PSCAN PSTOP POFF PLOW

Execution type
before change

Scan execution type

No change - remains
scan type execution.

Initial execution type

Standby type

Becomes scan
execution type.

Output turned OFF in
next scan.

Becomes standby type
from the next scan after | Becomes low-
that. speed type.

Becomes standby
type.

No change - remains

standby type. No processing.

Low-speed execution
type

Low-speed execution
type execution is
stopped: becomes
scan execution type
from the next scan.

{Execution from step 0)

Low-speed type

Low-speed execution | execution is stopped,

type execution is. and output is turned No change -
stopped: becomes OFF in the next scan. remains low-
standby type from Becomes standby type speed type.

from the next scan after
that.

next scan.

3. SEQUENCE PROGRAM CONFIGURATION &
EXECUTION CONDITIONS

When MO switches ON, the
ABC program is converted
from a standby program to
a scan execution program.

When M1 switches ON, the
ABC program is converted

from a scan execution pro-
gram to a standby program.

MELSEC-QnA

(b) The following methods can be used to convert a program which is to
be executed.

1) Selecting the program to be executed from a
single management program:

-

§

Using a constantly executed scan execution program as the
management program, a standby program which conforms to
the designated conditions is converted to a scan execution
program and is executed.

Scan execution programs which are not required can be
converted to standby programs.

The operation which occurs when "ABC", "DEF", "GHI"*, and
"JKL" standby programs (at a single management program)
are converted is illustrated below.

Scan execution program
{management program)

MO

--—{ }—-——[PSCAN "ABC"
M1

--—1 }-———I:PSTOP "ABC"

-—1 }-———[PSCAN “DEF"

——{ }—-—{PSTOP “DEF”

» The PSCAN instruction is used
to convert the ABC program to
a scan execution program.

» The PSTOP instruction is used
to convert the ABC program to
a standby program.

o

TPV I U IR N)

= =} o o e

Standby Standby Standby Standby
rogram program program program
P :AgBC :DEF :GHI JKL

3. SEQUENCE PROGRAM CONFIGURATION &

EXECUTION CONDITIONS .
MELSEC-QnA

2) Converting the scan execution program being executed to an-
other type of program:

¢ For the scan execution program being executed, the next
program to be executed is converted from a standby program
to a scan execution program.

¢ In the illustration below, the ABC and GHI programs are des-
ignated as scan execution programs, and DEF is designated
as a standby program. The illustration shows the operation
which occurs when the ABC and DEF program types are
converted when the conditions are satisfied.

[Before execution of PSCAN and PSTOP instructions]

Scan execution program : ABC

* The PSCAN instruction is used to
convert the designated program (DEF)
to a scan execution program.

e The PSTOP instruction is used to
convert the designated program (ABC)
to a standby program.

Standby program : DEF Scan execution program : GH!

PSCAN "GHI"
PSTOP “DEF™

"MQ" is switched ON

[After execution of PSCAN and PSTOP instructions]

Standby program : ABC

MO

PSCAN “DEF™
PSTOP “ABC"

Scan execution program : DEF Scan execution program : GHI

3. SEQUENCE PROGRAM CONFIGURATION &
EXECUTION CONDITIONS

MELSEC-QnA

(c) As program execution type conversions by PSCAN and PSTOP
instructions occur at the END processing, such conversions are
impossible during program execution.

When different execution types have been set for the same program
in the same scan, the execution type will be that specified by the
execution switching command that was executed last.

END END END
Execution processing processing processing
program — "GHI" I “ABC" “GHI" I YGHI" - “DEF™".. GHI
name F lee | P I [[

L i T f
_ PSTOP "ABC"®

*DEF" converted
to scan execution

executed program

“ABC" converted
PSCAN "DEF to standby execu-
executed tion program

1) *: The order of GHI and DEF program execution is determined by the program settings
parameters.

3-29

3. SEQUENCE PROGRAM CONFIGURATION &
EXECUTION CONDITIONS

(4)

MELSEC-QnA

Precautions for creating stand-by type programs

(a) Because current value is updated and contact ON/OFF is switched
when the OUT T:: instruction is executed, timers cannot be used in
stand-by type programs.

However when using the program set the stand-by type changing into
the scan execution type, the timer is available.

(b) Gathering sub-routine programs into a single program

1) Create the sub-routine programs in order, beginning from step
0 of the standby program. An END instruction is required at
the end of the sub-routine program.

2) Because there are no restrictions regarding the creation se-
quence of sub-routine programs, the pointer numbers need not
be assigned in ascending order when creating multiple sub-rou-
tine programs.

3) Use only common pointers. *
Sub-routine programs with common pointers can be called
from all programs executed by the QnACPU.

Program A QnACPU

Memory card/
internal RAM

Program

Main routine Write
program

Program B (standby program) |~ ProgBram

500 —{ |-—<Y1o
—[RET
P508 ——{ }—-—-—-——<Yn
————————-—{RET
P501 ——{ }-————<Y12
———[RET

END

Write

Y Y Y

Use common pointers. *
(Sub-routine programs need not be created in
ascending order.)

4) When local devices are used in sub-routine programs, opera-
tion is carried out in accordance with the local device values at
the origin of the sub-routine call (program in which the
CALL/ECALL instruction is executed).

Local device values are not stored or reset before or after exe-
cuting the sub-routine program of a standby program.

1) *: See Section 4.9.2 for details regarding common pointers.

3. SEQUENCE PROGRAM CONFIGURATION &
EXECUTION CONDITIONS
MELSEC-QnA

(c) Gathering interrupt programs into a single program

1) Create the interrupt programs in order, beginning from step 0
of the standby program. An END instruction is required at the
end of the interrupt program.

2) Because there are no restrictions regarding the creation se-
quence of interrupt programs, the pointer numbers need not be
assigned in ascending order when creating multiple interrupt

programs.
Program A QnACPU
Memory card/
Mai " internal RAM
ain routine
program Write Program
A
Program B (standby program) | -7 Pro%ram
Ao o > %
I
L
Interrupt program <
B2 f————11 >
[
{rr H
Ces b <12
r
. [reT]—
END

Use interrupt pointers. *
(interrupt programs need not be created in ascending order.)

1) *: See Section 4.10 for details regarding interrupt pointers.

3. SEQUENCE PROGRAM CONFIGURATION &
EXECUTION CONDITIONS

3.3 Input/Output Processing & Response Lag

The QnACPU features a refresh type input/output processing format in
which a batch communication with the input/output module occurs at END
processing.

A direct communication format is also possible by using direct access inputs
/outputs at the sequence program to enable direct communication with the
input/output module when the sequence program instructions are executed.
For details regarding direct inputs and direct outputs, refer to Sections

4.2.1 and 4.2.2, respectively. '

3.3.1 Refresh mode

(1) Definition
With the refresh mode, batch communication with the input/output
modules occurs at END processing.

(a) Batch reading of the input module ON/OFF information is executed
in the QnACPU'’s internal input data memory when END processing
occurs. This ON/OFF data (in the input data memory) is then used
for processing which occurs when a sequence program is executed.

(b) The processing result of the output (Y) sequence program is output
to the QnACPU’s internal output data memory, and batch output of
the ON/OFF data (in output data memory) to the output module is
executed when END processing occurs.

QnACPU

CPU (operation processing arsa) .
i At input
@) m%l:t éx) sz;l;’i‘:e"al refresh Input | 5
|
Xg memory input area (1) module
}_
(1) At input Area for com-|
refresh munication]
with input
4 module
J @ *2 At output
For data refresh N
22 memory modwe O
}—————(YZQ > (5) output (Y) @ 7N

» Input refresh:
Input information is read in a batch ((1)) from the input module at END processing, and is
stored in the input (X) data memory by an OR operation in the peripheral device input area.

e Output refresih:
Data in the output (Y) data memory is output in a batch ((2)) to the output module at END
processing.

e When an input contact instruction has been executed:
Input information is read ((3)) from the input (X) data memory, and a sequence program is
executed.

» When an output contabt instruction has been executed:
Output information is read ((4)) from the output (Y) data memory, and a sequence program is
executed.

» When an output OUT instruction has been executed:
The sequence program operation result ((5)) is stored in the output (Y) data memory.

Fig.3.5 Input/Output Information Flow at Refresh Mode

1) *1: See Section 3.3.2, item 1).
2) *2: See Section 3.3.2, item 2).

3-32

3. SEQUENCE PROGRAM CONFIGURATION &
EXECUTION CONDITIONS

MELSEC-QnA

(2) Response lag

Output response lags of up to 2 scans can result from input module
changes. (See Fig. 3.6)

Ladder examplesi

X5 , Ladder for switching the Y5E out-
s (vat put ON in response to an X5 input
ON.

[Fastest possible YSE ON |

Input refresh Input refresh Output refresh

0 END lo 56 Mo /0
S o i
OFF T i
External E E i
contact ™ i i
OfF] 1
x5 | i
]]
QnACPU 10N '
devices OFF i
YSE !
VON
OFF {_'——

External load

Lag time

(minimum of 1 scan)

The fastest possible Y5E ON occurs if the external contact is switched
ON immediately prior to the refresh operation. X5 then switches ON at
the input refresh, Y5E at step 56 switches ON, and the external load
switches ON at the output refresh following execution of the END
instruction. In this case, the time lag between the external contact ON
and the external load ON is 1 scan.

l Slowest possible YSE ON I

Input refresh Input refresh Output refresh
0 END o 56 N o
ON !
External oFF i
contact i
10N
OFF
o 71
QnACPU ON
devices OFF
ON
OFF
External load
Delay time |

(maximum of 2 scans)

The slowest possible YS5E ON occurs if the external contact is switched
ON immediately after the refresh operation. X5 then switches ON at
the next input refresh, Y5E at step 56 switches ON, and the external
load switches ON at the output refresh following execution of the END
instruction.

In this case, the time lag between the external contact ON and the
external load ON is 2 scans.

Fig.3.6 Output "Y" Change In Response to Input "X" Change
3-33

3. SEQUENCE PROGRAM CONFIGURATION &

EXECUTION CONDITIONS
MELSEC-QnA

3.3.2 Direct mode
(1) Definition

in the direct mode the communication with the input/output modules is
performed when executing sequence program instructions.

With QnACPU, direct mode 1/O processing can be executed by using
direct access inputs {(DX) and direct access outputs (DY).

QnACPU

! CPU (operation processing area) "1 I

) Peripheral Input

device o o—
(3) Input (X) input area module
data

memory

"2

(4)
ovzo Ou;pz;ta(Y) Output A~
——bY25 > (5) memory module _(/ _)\

« When an input contact instruction has been executed:
An OR operation is executed for the input module’s input informa-
tion ((1)) and the peripheral device input area’s input information
((2)), and the result is stored in the input (X) data memory. This
data is then used as input information ((3)) at sequence program
execution.

¢ When an output contact instruction has been executed:
Output information ((4)) is read from the output (Y) data memory,
and a sequence program is executed.

o When an output OUT instruction has been executed:
The sequence program’s operation result ((5)) is output to the out-
put module, and is stored in the output (Y) data memory.

Fig.3.7 Input/Output Information Flow at Direct Mode

1) *1: The peripheral device input area can be switched ON and OFF by the following:

» Test operation by peripheral device.

« Alink refresh by the MELSECNET (/B) data link system.

» A network refresh by the MELSECNET /10 network system.
« Writing from a serial communication module.

+ Automatic refresh of CC-Link.

2) *2: The output (Y) data memory can be switched ON and OFF by the following:

- Test operation by peripheral device.

» A link refresh by the MELSECNET (/B) data link system.

< A network refresh by the MELSECNET /10 network system.
« Writing from the serial communication module.

« Automatic refresh of MELSECNET/MINI or CC-Link

3. SEQUENCE PROGRAM CONFIGURATION &
EXECUTION CONDITIONS

POINT

(1) When specifying the input (X) as the receive data storage device in

automatic refresh setting for MELSECNET/MINI or CC-Link, use
the 1/0 number later than those used with the module loaded on the
main or extension base.

If the 1/0 number used for the I/O of the receive data storage de-
vice is within the I/O number range used with the module loaded on
the main or extension base, the CPU module will import both the in-
put ON/OFF data from the input module and the automatic refresh
ON/OFF data of MELSECNET/MINI or CC-Link.

Hence, the CPU module will result in an input (X) fault.

When turning ON/OFF the input (X) using the sequence program in-
struction, use the same input number as indicated below.

-Input number used with the module loaded on the main or
extension base.

*Input number used with MELSECNET(/B)

*Input number used with MELSECNET/MINI or CC-Link

When you use the same input number as indicated above, the data
imported in the refresh of the input module or MELSECNET{/B) or
in the automatic refresh of MELSECNET/MINI or CC-Link is written
over the ON/OFF status of the sequence program instruction.

MELSEC-QnA

3. SEQUENCE PROGRAM CONFIGURATION &
EXECUTION CONDITIONS

MELSEC-QnA
(2) Response lag
_ Output response lags of up to 1 scan can result from input module

changes. (See Fig. 3.8)

Ladder examples
X5 Ladder for switching the DY5E
55’—-1‘f {DYSE)—’ output ON in response to an DX5
input ON.

l Fastest possible DY5SE ON]

LD DX5
OUT DYSE

¢ Y {
!
T

N

OFF
DX5 ——I
OFF
DYSE —————J
The fastest possible DY5E output ON occurs if the DX5 input is

switched ON immediately prior to the step 55 operation. If DX5 is ON

when step 55's LDDX5 is executed, DYSE will switch ON within that
scan.

This condition represents the minimum time lag between the DX5 input
ON and the DY5E output ON.

ON

ON

(Slowest possible DY5E ON !

off
ON
OFF
DYSE

l Delay time J
v

{maximum of 1 scan)

The slowest possible DY5E output ON occurs if the DX5 input is
switched ON immediately after the step 55 operation. In this case, the
DYGE output will switch ON draing the next scan.

This condition represents the maximum time lag (1 scan) between the
DX5 input ON and the DY5E output ON.

Fig. 3.8 Output "Y" Change in Response to Input "X" Change

3. SEQUENCE PROGRAM CONFIGURATION &
EXECUTION CONDITIONS

3.4 Numeric Values which Can Be Used in Sequence Programs

Numeric and alphabetic data are expressed by "0" (OFF) and “1" (ON) nu-
merals in the QnACPU.

This method of expression is called "binary code" (BIN).

The hexadecimal (HEX) expression method in which BIN data are ex-
pressed in 4-bit units, and the BCD (binary coded decimal) expression
method are also possible for the QnACPU.

The numeric expressions for the BiN, HEX, BCD, and Decima! (DEC) nota-
tions are shown in Table 3.1 below.

Table 3.1 BIN, HEX, BCD, and Decimal Numeric Expressions

. HEX . BCD
DEC (Decimal) {Hexadecimal) BIN (Binary) {Binary Coded Decimal)
0 0 | © | 0
i 1 | 1 | 1
2 2 10 10
3 3 by b1
.) [[

. : | I
i ﬁ b i
. . [-
9 9 |1001 ; 1001
10 A]1010 1‘0000
11 B 1011 110001
12 c [t100 110010
13 D (1101 110011
14 E 1110 110100
15 F 1111 10101
16 10 110000 10110
17 11 1]0001 110111
. . L [
| |
| !
47 oF 10!111'1 1001011'1

Single precision floating decimal point real numbers may also be used.
(See Section 3.4.4)

3. SEQUENCE PROGRAM CONFIGURATION &
EXECUTION CONDITIONS

MELSEC-QnA

(1) External numeric inputs to QnACPU

When designating numeric settings for the QnACPU from an external
source (digital switch, etc.), a BCD (binary coded decimal) setting can
be designated which is the same as a decimal setting.

However, because the BCD method involves BIN expressions being
processed in the same manner as decimal expressions, the QnACPU
operation based on such values will be different from the operation
specified by the designated value.

A BIN instruction is therefore provided for the QnACPU to convert BCD
input data to the BIN data which is used by the QnACPU.

A program which converts numeric data to BIN data can be created at
the sequence program in order to allow numeric settings to be desig-
nated from an external source without regard to the corresponding BIN
values.

QnACPU

[Numeric data designation]
Digital switch — ———— B K%xo po -
_ BCD input

XF to X0 8

_._i }-—————(BCO D5 K4Y30:|——

Fig. 3.9 Digital Switch Data Input to QnACPU
(2) External numeric outputs from QnACPU

A digital display can be used to display numeric data which is output from
the QnACPU. However, because the QnACPU uses BIN data, it cannot
be displayed at the digital display as is. A BCD instruction is therefore
provided for the QnACPU to convert the BIN data to BCD data. A
program which converts BIN data to BCD data can be created at the
sequence program in order to display the output data in a manner
identical to decimal data.

QnACPU

- [Numeric data designation}
f———— oive kaxo 0o Digital display
. I
| 517[3] 4]

8 Y3F to Y30
,_l I—w—f—— ———————— I BED 05 KIIY.SO] [
n \.Z11BCD output |
———————- BIN data

Fig.3.10 Digital Display of Data from QnACPU

3. SEQUENCE PROGRAM CONFIGURATION &

EXECUTION CONDITIONS

3.4.1 BIN (Binary Code)
(1) Binary code

In binary code, numeric values are expressed by numerals "0" (OFF) and
“1" (ON) numerals. When counting in the decimal system, a carry to the
"tens” column occurs following 9 (8-9-10). In the binary system, this
carry occurs following 1 (0-1-10). The binary “10" therefore represents
the decimal "2". Binary values and their respective decimal values are
shown in Fig.3.2 below.

Table 3.2 Binary and Decimal Numeric
Value Comparison

DEC (Decimal) BIN (Binary)
0 0000
1 0001
‘Carry
2 0010
3 0011
Carry
4 0100
5 0101
6 0110
7 0111
] Carry
8 1000 ;
9 1001
10 1010
11 1011

(2) Binary numeric expression
QnACPU registers (data registers, link registers, etc.) consist of 16 bits,
with a "2"" value is allocated to each of the register bits.

The most significant bit (initial bit) is used to discriminate between
"positive” and "negative".

1. When most significant bit is "0"...Positive
2. When most significant bit is "1"...Negative

The numeric expressions for the QnACPU registers are shown in
Fig.3.11 below.

Most significant bit (for positive/negative discrimination)

Bit name ——> b15 b14 b13 b12 b11 b10 b3 b8 b7 b6 b5 b4 b3 b2 b1 b0

215 214 21_5 2\2 2|| 2!0 25 2!\ ?I l}-ﬁ 25 24 25 27 21 20
| e A |
Decimal value -32768163848192409620481024 512 256 128 64 32 16 8 4 2 1

l

——> "Negative value” when most significant bit is "1".

Fig.3.11 Numeric Expressions for QnACPU Registers

3~39

3. SEQUENCE PROGRAM CONFIGURATION &

EXECUTION CONDITIONS

{a) Usable numeric data for QnACPU

As shown in Fig.3.11, the numeric expression range is -32768 to
32767. Therefore, numeric data within this range can be stored in

the QnACPU registers.

3. SEQUENCE PROGRAM CONFIGURATION &
EXECUTION CONDITIONS

3.4.2 HEX (Hexadecimal)
(1) Hexadecimal notation

In the hexadecimal system, 4 bits of binary data are expressed by 1 digit.
4 bits of binary data can express 16 values (0-15).

In the hexadecimal system, values from 0 to 15 are expressed by 1 digit.
This is accomplished by using alphabetic characters following "9", with
a carry occurring after "F", as follows:

A comparison of binary, hexadecimal, and decimal numeric expressions
is shown in Table 3.3 below.

Table 3.3 Comparison of BIN, HEX, & DEC
Numeric Expressions

. HEX)
DEC (Decimal) (Hexadecimal) BIN (Binary)
0 0 o
1 1 |1
2 2 | 10
3 3 ;1
I ﬁ |
. . I
: . b
9 9 11001
10 A 11010
11 B 1011
12 c 1100
13 D 11101
14 E [1110
15 F 1111
16 10 1! 0000 — 1 cany
17 11 11 0001
|
|
. . |-
47 2F 10, 1111

(2) Hexadecimal numeric expression

QnACPU registers (data registers, link registers, etc.) consist of 16 bits.
Therefore, as expressed in hexadecimal code, the numeric value range
which can be stored is 0 to FFFFH.

3. SEQUENCE PROGRAM CONFIGURATION &

EXECUTION CONDITIONS

3.4.3 BCD (Binary Coded Decimal)
(1)’ BCD notation

BCD numeric expressions are binary expressions with a carry format
identical to that of the decimal system.

As with the hexadecimal system, BCD expressions are the equwalent of
4 binary bits, although the BCD system does not use the A-F alphabetic
characters.

A comparison of binary, BCD, and decimal numeric expressions is shown

in Table 3.4 below.

Table 3.4 Comparison of Binary, BCD,
and Decimal Numeric Expressions

DEC (Decimal) BIN (Binary) (Binary oo Decimal)
0 0 i o
1 1 { 1
2 10 10
3 11 by
4 100 | 100
5 101 | 101
6 110 110
7 111 boyqq
8 1000 | 1000
9 1001 1001
10 1010 1:0000 __Jcamy
11 1011 110001
12 1100 110010

(2) QnACPU registers (data registers, link registers, etc.) consist of 16
bits. Therefore, as expressed in BCD code, the range of numeric val-

ues to be stored is 0-9999.

3. SEQUENCE PROGRAM CONFIGURATION &

EXECUTION CONDITIONS

3.4.4 Real numbers

(1) Real numbers
Real numbers are single precision floating decimal point data.

(2) Internal expression of floating decimal point data
The QnACPU’s internal expression of received floating decimal point
real number data is explained below.
Floating decimal point data is expressed as shown below, using 2 word
devices.

1. [Mantissa] X 2 (characteristic)

The bit configuration used for internal expression of floating decimal point
data is shown and explained below.

HENNEEREN RSN

b31 b30 b23 b22 - b6 ®1% b0 N

b23-b30 b0-b22 Mantissa
Characteristic

b31 Mantissa code

+ Mantissa code: The mantissa code is expressed at b31 as follows.
0: Positive
1: Negative

e Characteristic: The "n" of "2n" is expressed in various ways at
b23-b30, depending on the b23-b30 BIN value.

b23 - b30 FFu FEnx FDu <(81n | 80n | 7FH | 7EnH ((024 01y 00H
Not Not
used 127 126 << 2 1 0 -1 S< -125 -126 used

» Mantissa: For a binary value of 1. XXXXXX..., the "XXXXXX"
portion of the value is expressed at b0-b22 (23 bits).

n

POINTS]

s The monitor function for peripheral devices permits monitoring the
data on floating decimal point of the QnACPU.

e For a "0" value, "0" will be indicated at all the b0-b31 bits.

3. SEQUENCE PROGRAM CONFIGURATION &
EXECUTION CONDITIONS

e Calculation examples are shown below (the nnnnn "X" indicates an- X-
system data expression)

(1) Storing "10"
(10)10 — (1010)2 - (1.01000..... x 2%)2
Mantissa code: Positive - 0
Characteristic : 3 — 824 — (10000010)2
Mantissa : (010 00000 00000 00000 00000)2

The data expression will therefore be 412000004, as shown below.

Code Characteristic Mantissa
010000010 010000000000000000000600
N Jo — . J AN)\ J)
AN T A A A R
4 1 2 0 0 0 0 0

(2) Storing "0.75"
(0.75)10 — (0.11)2 = (1.100,.. x 2.1)2
Mantissa code: Positive — 0
Characteristic: -1 - 7EH — (01111110)2
Mantissa : (100 00000 00000 00000 00000)2

The data expression will therefore be 3F400000H, as shown below.

Code Characteristic Mantissa
0011j111910000000000000000000000
[Y T N I
3 F 4 0 0 0 0 0

At the binary system, the portion of the value following the decimal point is calculated as

follows:
0.1 1 0 1
This bit This bit 2 This bit This bit
expresses 2! expresses 2 expresses 2°° expresses 2°

(0.1101)2 = 271+2242% = 0.5+0.25+0.125=(0.875)10

3. SEQUENCE PROGRAM CONFIGURATION &
EXECUTION CONDITIONS

3.5 Character String Data
(1) Character String Data

The QnACPU uses ASCII code data.

(2) ASCII code character strings

ASCIl code character strings are shown in the Table below. "00K" (NUL
code) is used at the end of a character string.

0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
i 0 1 0 1 0 1 0 1
ot

{ b8 ‘ b7 ‘ b6 t b5 | b4 | b3 | b2 | bl | . 0 1 2 3 4 5 6 7
' 0 0 0 0 0 | NUL (sPy| o© @ P p
0 0 0 1 1 ! 1 A Q a q
0 0 1 0 2 ' 2 B R b r
0 0 1 1 3 # 3 C S c s
0 1 0 0 4 $ 4 D T d t
0 1 o 1 5 % 5 E U e u
0 1 1 0 6 & 6 F v f v
0 1 1 1 7 7 G w g w
1 0 0 0 8 (8 H X h x
1 0 0 1 9) 9 | Y i y
1 0 1 0 A . J z i z
1 0 1 1 B + K I k {
i 1 0 0 c < L \ ! |
1 1 0 1 D = M] m }
1 1 1 0 E > N A n ~

1 1 1 1 F / ? 0 ~ o

4. DEVICES

MELSEC-QnA
4. DEVICES

41 Device List

4.1.1 Device list

The names and data ranges of devices which can be used in the QnACPU are
shown in Table 4.1 below.

Table 4.1 Device List

Default Values Parameter Reference
Class Type Device Name Number of Designated Seecti::
Points Range Used Setting Range
Input 8192 points X0 to X1FFF 4.2.1
P po Fixed
Output 8192 points YO0 to Y1FFF 4.2.2
Internal relay 8192 points ‘{MO to M8191 4.2.3
Latch relay 8192 points LO to L8191 4.2.4
Bit devices Annunciator 2048 points FO to F2047 425
Edge relay 2048 points VO to V2047 4.2.6
Internal *3 . S0 to S511 per
user Step relay 8192 points block 4.2.9
i . Ch ibl
devices Link special relay 3 | 2048 points SBO to SB7FF forazrggz 5«2?3'3 ::. 4.2.8
Link relay 8192 points BO to BIFFF less. * 427
Timer ! 2048 points TO to T2047 4.2.10
Retentive timer'* |0 points (STO to ST2047) o
Counter! 1024 points C0 to C1023 4.2.11
Word devices
Data register 12288 points DO to D12287 4.2.12
Link register 8192 points WO to WiFFF 4.2.13
Link special .
register 2048 points SWO to SW7FF 4.3.14
Function input 5 points FXO0 to FX4 4.3.1
Internal | Bit devices Function output 5 points FYO to FY4 4.3.1
Sysiem Special relay 2048 points | SMO to SM2047 | mpossible 4.3.2
Function register |5 points FDO to FD4 4.3.1
Word devices g P
Special register 2048 points SDO to SD2047 4.3.3
N . Jn\X0 to
Link input 8192 points JMX1FFE
. . Jn\YO to
Link output 8192 points
Bit device i Jn\Y1FFF
Link Link rela: 8192 points JmMB0 to
direct Y P JN\B1FFF Impossible 4.4
devices . . : Jn\SBO to
Link special relay |512 points J\SB1FF
) . R JnN\WO to
) Link register 8192 points J\W1FFF
Word device -
Link special R Jdn 0 to
register 512 points JN\SW1FF
Special
function . . . Un\GO to .
module Word device Buffer register 16384 points Un\G16383 Impossible 4.5
device

4. DEVICES

MELSEC-QnA
Default Values Parameter Reference
Class Type Device Name Number of Designated Section
Points Range Used Setting Range
index Word device Index register 16 points Z0 to Z15 Impossible 4.6
register P .
File R 0 to 1024 k points
register Word device File register 0 points (1 K units) 4.7
Nesting - Nesting 15 points NO to N14 Impossible 4.8
. Pointer 4096 points PO to P4095 . 4.9
Pointers ——e Impossible
Interrupt pointer 48 points 10 to 147 4.10
SFC block 320 points BLO to BL319 4.11.1
Bit devices -
SFC transition .
Other device 512 points TRO to TR511 Impossible 4.11.2
Network No. 256 points J1to J255 4.11.3
1/0 No. Uo to UFF 4.11.4
Decimal
constants K-2147483648-K2147483647 4.12.1
Hexadecimal
HO to HFFFFFFFF 4.12.1
Constants constants
Real number
constants E + 1.17549-38 to E + 3.40282+38 4.12.3
Character string . X xinam
constants ABC*, *123 4.12.4

1) *1: For the timer, retentive timer, and counter, bit devices are used for the “number
of points* and the *coil", and the word device is used for the “present value®*.

2) *2: The actual number of usable points varies according the the special module.
For details regarding the buffer memory’s "number of points®, refer to the Special
Function Module Manual.

3) *3: inputs, outputs, step relays, link special relays, link special registers remain at

their default values, which cannot be changed.

4.1.2 Setting units in the internal user device

For all QnACPU internal user devices other than the input (X), output (Y), and
step relay (S) devices, the number of points used can be changed within a
28.8 k word range by the "device setting” parameters. The items to consider
when making such changes are discussed below.

(1) Setting range
(a) The number of device points is designated in 16-point unit.

(b) A maximum of 32 k points can be designated for one type of device.
The maximum total number of points for the internal relay, latch
relay, annunciator, edge relay, link relay, timer, retentive timer, and
counter, is 64 k points. 1 points is calculated as 2 points (1 for coil,
1 for contact) for the timer, retentive timer, and counter.

4. DEVICES

(2)

(a) For bit devices:
For bit devices, 16 points are calculated as 1 word.

Memory size (Bit device size)

MELSEC-QnA

(M+L+F+B+SB total number of points)

(Word device size) =

16

(Word)

(b) For timer (T) retentive timer (ST), and Counter (C):
For the timer, retentive timer, and counter, 16 points are calculated

as 18 words.

(Timer, retentive, counter size) =

(T,ST,C total number of points)

16

x18 (Words)

(c) For word devices:
For data registers (D), link registers (W), and special link registers
(SW), 16 points are calculated as 16 words.

(D,W,SW total number of points)

(Word device size) =

x16 (Words)

16
[Device setting screen]

{Device Settingl Label :

Device Sym jRad| Devices Enahle C/L Key Disable C/L Key
Input Relay & 16 K
QOutput Rclu{ ¥ |16 8K
Internal Relay| M (10 |L)]
Latch Relay L |18 {r 1 [I-L]
Link Relay B |16 L 8KJ { -1 1|t 1~ 1
finnunciator F |18 |I 2K1] { -1 1 { 1-L)]
Link Sp Relay | SB }16 2K
Edge Relay ¥ j18 it 2X1 8 1-f 1]I 1-f 1
Step Relay s i8 8K
Timex T |i8 |I 2K1 L -1 111 -1 b
ficunlt Timer ST |18 |f @K] { 1-1 1]t I-L 1
G ¢ |18 |L 1X1 i 1~ 1]¢€ pagd 1
Data Register D |18 |[12K1 L -I 3 i 1-I b
Link Register ¥ (16 L 8K1 L 1-I 1 L 1-r 1
Link Sp Reg S¥ |16 2

Deyices Total<28.8>K\Word

F3:Latch->LocalDev—> Esc:Close

\— Default values

"Number of points" can be changed at devices
where a "number of points” value is shown in
brackets.

4. DEVICES

-4,2° Internal User Devices

Internal user devices can be used for various user applications.
The "number of usable points” setting is designated in advarice {(default value)
for internal user devices. However, this setting can be changed within a 28.8k
word range by a peripheral device parameter setting.

[See Section 4.1 for details regarding the internal user device default]
value and the setting range which can be designated by parameter setting

POINT’

(1) When an internal user device’s "number of usable points” setting is
changed, files which were created under the previous setting cannot
be used as they are. In order to use these files, the following
operation is required after changing the "number of usable points"
setting:

+ The sequence program

* The SFC program

The sequence program and SFC program must be read from the
QnACPU to the peripheral device, and then they must be written
back to the QnACPU again.

4.2.1 Inputs (X)
(1) Definition
(2) Inputs are commands or data transmitted to the QnACPU from a

peripheral device by push-button switches, selector switches, limit
switches, digital switches, etc.

Push-button switch

@)

Selactor switch

Digital switch

ulale

(b) The input point is the Xn virtual relay inside the QnACPU, with the
program using the Xn’s N/O contact or N/C contact.

Input (X)

Sequence
operation

Virtual relay r__ R — —l
PB1 T~ __IX? ;
|

‘ Sequence

5o @ O-
Ls2 X1 i‘/
=
—0 O X1 }—1 +— | % !
{
PB16 XF l
— 1
+0 O @—‘ Ly 0_4 !
L — - -
. J o J
Y Y
Input ladder (external device) Program

Fig.4.1 Inputs (X)
4-4

4. DEVICES

MELSEC-QnA

(c) There are no restrictions regarding the number of Xn N/O contacts
and N/C contacts used in a program.

X0 X2
1
r

- # r20
No restrictions regarding pXO X1 X2
the quantity used. T 21
o

T

Fig.4.2 Input (x) Used in Program

(d)"X"cannot be used in the following area;

where the output module is mounted, or;

of the empty slots preceding the last mounted slot.
If an accidental use of the wrong "X"occurs, it may result in
malfunctions of the systems.
In addition, "X" that cannot be used is sometimes displayed on the
screen during monitoring. This does not give any effect on the system
operation.

(2) Reading the inputs
(a) There are 2 types of input: “refresh inputs" and "direct access
inputs”.

1) Refresh inputs are ON/OFF data read from the input module

using the refresh mode. *1
These inputs are indicated as "X3" in the sequence program.

For example, a "100" input becomes "X100".

2) Direct access inputs are ON/OFF data read from the input module

using the direct mode. *2
These inputs are indicated as "DX::" in the sequence program.
For example, a "100" input becomes "DX100".

1) *1: See Section 3.3.1 for details regarding the refresh mode.

2) *2: See Section 3.3.2 for details regarding the direct mode.

4. DEVICES

(b)

MELSEC-QnA

The same input number can be designated for a refresh input and a
direct access input. :

If used as a refresh input after being used as a direct access input,
operation will be based on the ON/OFF data read at the direct access
input.

Operation is based on the

N

ON/OFF data read at the direct
access input.

L

(Y10 >—

Direct access input

i "y

N TN

Operation is based on the
ON/OFF data read at the END
processing input refresh.

Lx

2 >

Fig.4.3 Refresh Input & Direct Access Input

POINT}

(1) Direct access inputs can only be used in one point units.
They cannot be specified with digit designation.

o |.D DXO Can be used
e MOV K4DX0 DO ————Cannot be used

I

Digit designation for direct access
inputs is not possible.

(c) Differences between refresh inputs & direct access inputs
With direct access inputs, the input module is directly accessed by
the executed instruction, and the processing speed is therefore

slower than that for refresh inputs.

Moreover, direct access inputs can only be used for inputs used with
the input module and special function module (modules installed at
base unit and extension base unit). The refresh and direct input
differences are shown in Table 4.2 below.

Table 4.2 Differences between Refresh Inputs & Direct Access Inputs

ltem

Refresh Input Direct Access Input

Processing speed

0.075t0 0.2 us Approx. 10 us

extension base unit

Input module installed at base/

unit

Inputs of special function module
installed at base/extension base

Inputs of 1/O link module instalied
at base/extension base unit

network system

Inputs used at MELSECNET/10

data link

Inputs used at MELSECNET (11/B)

Inputs used at

MELSECNET/MINI-S3 link

4. DEVICES

MELSEC-QnA
4.2.2 Outputs (Y)
(1) Definition

(a) Outputs are program control results which are output to external
destinations (solenoid, electromagnetic switch, signal lamp, digital

display, etc.).
Signal lamp
. NI
Q.
Output (Y) Digital display
Sequence| /
operation I
Contractor

(b) Outputs occur at one N/O contact or its equivalent.

(c) There are no restrictions regarding the number of output Yn N/O
contacts and N/C contacts used in a program.

Programmable
J No restrictions to the quantity used

controller

[~ T T T R Load

WEY/A |

| H (v20 +—H M51

1 Y20 .]

| H |

i X1 Y20 X2 !

| HF—— o |

' Y20 X3 !

il oz |

I S - S

1N J o\ A

Y Y
Program Out ladder (external device)

Fig.4.4 Output (Y) Operation

(2) Using outputs as internal relays (M)
"Y" inputs corresponding to vacant slots and slots where input mod-
ules are installed can serve as internal relays (M).

Power supply module
QnACPU
Input module
Input module
Output module
Output module
Output module

{

QUT ,Y\D\
L Fquivalent to

internal relay

4. DEVICES

MELSEC-QnA

(3) Output method

()

(b)

There are 2 types of output:"refresh outputs" and "direct access
outputs”.

1) Refresh outputs are ON/OFF data which is output to the output
module using the refresh mode. *1
These outputs are indicated as "YII" in the sequence program.
For example, a "100" input becomes "Y100".

2) Direct access outputs are ON/OFF data which is output to the
" output module using the direct mode. *2
These outputs are indicated as "DY" in the sequence program.
For example, a "100" input becomes "DY100".

Ditferences between refresh outputs & direct access outputs

With direct access outputs, the output module is directly accessed
by executing an instruction, and the processing speed is therefore
slower than that for refresh outputs.

Moreover, direct access outputs can only be used for outputs used
with the output module and special function module (modules in-
stalled at base unit and extension base unit). The refresh and direct
output differences are shown in Table 4.3 below.

Table 4.3 Differences between Refresh Outputs & Direct Access Outputs

ltem ’ Refresh Output Direct Access Output

Processing speed

0.075 to 0.02 pus

Output module installed at
base/extension base unit

Approx. 10 us

Outputs of special function
module installed at
base/extension base unit

Outputs of I/O link module
installed at base/extension

base unit

Outputs 'used at
MELSECNET/10 network

system

Outputs used at MELSECNET

(11/B) data link

Outputs used at
MELSECNET/MINI-S3 link

1)
2)

*{: See Section 3.3.1 for details regarding the refresh mode.

*2: See Section 3.3.2 for details regarding the direct mode.

4. DEVICES
MELSEC-QnA

POlNTl

(1) Direct access outputs can only be used in one point units.
They cannot be specified with digit designation.
* OUT DY10— Can be used
« MOV DO K4Y10 Cannot be used

_.Ij— Digit designation for direct access
outputs is not possible.

4. DEVICES

4.2.3 Internal relays (M)
(1) Definition

(a) Internal relays are auxiliary relays which cannot be latched by the
programmable controller’s internal latch (memory backup).

All internal relays are switched OFF at the following times:
- When power is switched from OFF to ON.

- When a QnACPU reset occurs.

- When a QnACPU latch clear operation is executed.

{b) There are no restrictions regarding the number of contacts (N/O
contacts, N/C contacts) used in the program.

No restrictions regarding the quantity used.
MO switches ON at X0 OFF — ON
The internal relay (M0) ON can only be used

for internal QnACPU processing, and cannot
be output externally.

MO ON/OFF information is output from the
/ output module to an external destination.
X1 MO
i /
— 'y (M100 >
X2 MO
! /
— (M2047)

Fig.4.5 Internal Relay
(2) Procedure for external outputs

(a) Outputs (Y) are used to output sequence program operation results
to an external destination.

(b) Link relays (B) are used to output ON/OFF information from MEL-
SECNET/10 to another station.

1) Latch relays (L) should be used when a latch (memory backup) is required.
See Section 4.2.4 for details regarding latch relays.

4. DEVICES

4.2.4 Latchrelays (L)

(1)

Definitio_n

(a)

(b)

(c)

Latch relays are auxiliary relays which can be latched by the pro-
grammable controller’s internal latch (memory backup).

Latch relay operation results (ON/OFF information) are saved even
in the following cases:

- When power is switched from OFF to ON.

- When a QnACPU reset occurs.

The latch is backed up by the QnACPU battery.

Latch relays can be switched OFF by the RUN/STOP key at the
QnACPU. However, a latch relay cannot be switiched OFF by
RUN/STOP key operation if latch clear has been made ineffective
for that latch relay in the device settings parameters.
For details regarding the setting for making latch clear ineffective,
refer to the User's Manual of the CPU module used.

There are no restrictions regarding the number of contacts (N/O
contacts, N/C contacts) used in the program.

No restrictions regarding the quantity used.

L0 switches ON at X0 OFF-> ON.

The latch relay (LO) ON can only be used for
internal QnACPU processing, and cannot be
output externally. processing, and cannot be
output externally.

// { v20 LO ON/OFF information is output from the out-
\ P

1 iz

/ put module to an external destination.

<L100 >-

(2)

Fig.4.6 Latch Relay

Procedure for external outputs

(a) Outputs (Y) are used to output sequence program operation results

to an external destination.

(b) Link relays (B) are used to output ON/OFF information from MEL-

SECNET/10 to another station.

1) Internal relays (M) should be used when a latch (memory backup) is not required.

See Section 4.2.3 for details regarding internal relays.

4-11

4. DEVICE

4.2.5 Annunciators (F)
(1) Definition

(a8) Annunciators are devices used by the user in fault detection pro-
grams.

(b) When annunciators switch ON, a special relay switches ON, and
the Nos. and quantity of annunciators which switched ON are
stored at the special registers.

e Special relay :SM62 Switches ON if even one
annunciator switches ON.
e Special register : SD62 No. of first annunciator which
switched ON is stored here.
:8DB3 .. The number (quantity) of

annunciators which are ON
is stored here.
: SD64 to SD79 ... Annunciator Nos. are
stored in the order in which
they switched ON.
(The same annunciator No. is
stored at SD62 and SD64.)
The annunciator No. stored at SD62 is also registered in the "fault
history area".

(c) The use of annunciators in the fault detection program permits the
user to check for the presence/absence of fault and to check the
fault content (annunciator No.), by monitoring the special relay
and special registers.

r--- Example ---ccoccm i m e e e e e r e e o -
The program which outputs the No. of the ON annunciator (F5) is shown below.
(Fault detection program)
X0 X10
—l seT f5
ol L~ SM62| OFF - ON
SM62 sDé62 05

0—-1

|—-——{Bcop SD62 K4Y20
SD63

|

Output of annunciator No.
which switched ON sDes 0

SD&4 05

Annunciator ON detection

4. DEVICE

(2) Annunciator ON procedure

(a) Annunciator ON procedure Annunciator operation can be
controlled by the SET F:: and OUT Fi: instructions.

1) The SET Fi: instruction switches the annunciator ON at the
leading edge (OFF—ON) of the input condition, and keeps the
annunciator ON when the input condition switches OFF. In cases
where many annunciators are used, the OUT Fi: instruction can
be used to speed up the scan time.

2) Although the OUT Fi: instruction can switch the annunciator ON
and OFF according to the input condition ON/OFF operation, itis
executed in each scan.

PO!NTI

(1) If switched ON by any method other than the SET Fi: and OUT Fi:
instructions, the annunciator functions in the same way as the
internal relay. '
{Does not switch ON at SM62, and annunciator Nos. are not
stored at SD62, SD64 to SD79.)

Moreover, even if an annunciator is switched OFF by the OUT F
{1 instruction, the special relay and special register content is not
changed. Therefore, an RST FiZ instruction or LEDR instruction
is required. (See item (3) below,"annunciator OFF procedure &
processing content")

(b) Processing at annunciator ON
1) Data stored at special registers (SD62 to SD79)

' a) Nos. of annunciators which switched ON are stored in order
at SD64 to SD79.

b) The annunciator No. which was stored at SD64 is stored at
SDe62. ‘

c)"1" is added to the SD63 value.

SET F50 SET F25 SET F2047

sD62
SD63
SD&4
SD8és
' sDés6

Up to 16 annunciator
Nos. can be stored.

o(ojo|lo|o |0 —

sSD67

SD791} o

4. DEVICE

MELSEC-QnA

2) Processing at QnACPU

a) Q2ACPU(-81), “USER" LED at CPU front is ON.
Q2AS(H)CPU(-S1)

b) Q3ACPU, Q4ACPU, ... The annunciator No. stored at SD62
Q4ARCPU is displayed on the LED display
(CPU front).

(3) Annunciator OFF procedure & processing content

(a) Annunciator OFF procedure
An annunciator can be switched OFF by the RST Fi: and LEDR in-
structions.

1)

2)

An annunciator No. which has been switched ON by the
SET F:: instruction can be switched OFF by the RST Fi: instruc-
tion. "

The LEDR instruction is used to switch OFF the annunciator Nos.
stored at SD62 and SD64.

An annunciator No. which has been switched ON by the

OUT F::instruction is switched OFF when the OUT F::instruction
is switched OFF.

However, if an annunciator is switched OFF by the

OUT Ft: instruction, the "processing at annunciator OFF" (item
(b) below) does not occur.

Execute the RST Fi: and LEDR instructions after the annunciator
has been switched OFF by the OUT FI: instruction.

1) To switch OFF only the annunciators stored at SD62 and SD64:

Display reset input

_I Il E LEDR]— SD62 and SD64

2) To switch OFF all annunciators which are ON:

H
i I'{ ! [U]_ ON program
M1 M2
— CIDS
Program which switches OFF
all annunciators which are ON
——{ wor H
M1 SME2
iy

e

Fault detection program (annunciator ON !

program) 1

annunciators OFF

Fault detection program
(annunciator ON program)

Display reset input
PLS MO

Mo SME2 } Display reset commarid (M0)

Display reset command OFF
program

4. DEVICE

MELSEC-QnA

1) The BKRST instruction can be used to switch OFF a specified annunciator No. range.
For details regarding the BKRST instruction, refer to the QnACPU Programming
Manual (Common Instructions).

(b) Processing at annunciator OFF

1) Special register (SD62 to SD79) data operation at LEDR
instruction

a) Annunciator No. stored at SD64 is deleted, and annunciator
Nos. stored at subsequent registers (SD65 to SD79) are
moved up to fill the vacant space.

b) The annunciator No. stored at SD64 is stored at SD62.

c)"1" is subtracted from the SD63 value.

d) If the SD63 value is "0", SM62 is switched OFF.

SETF50 SETF25 SETF2047 LEDR
H H

50 50

Sbhe2

§D83
sDeé4
SDs5

SD66
SDe7

O[O jJOo O |O |O |

P
17
/

1] ')] ' [] [H t

SD79 0 (] 0 0 0

2) Special register (SD62 to SD79) data operation at RST Fi2
instruction, and when an annunciator is switched OFF by the
OUT Fi: instruction

a) The annunciator No. which was switched OFF is deleted,

and all subsequent annunciator Nos. are moved up to fill the
vacant space.

b) If the annunciator No. stored at SD64 was switched OFF,
the new annunciator No. which is stored at SD64 is stored
at SD62.

c)"1" is subtracted from the SD63 value.

d) If the SD63 value is "0", SM62 is switched OFF.

4. DEVICE

MELSEC-QnA

SET F50 SET F25 SET F2047 RST F25

I | 1

SDe2
SD63
SDé64
SD65
SD66
SD67

OO0 |0 |0 O |

SD79| 0 0 0 0 0

3) Processing at QnACPU

a) Q2ACPU(-S1), o [f all SD64 to SD79 annunciator Nos.
Q2AS(H)CPU(-S1) are switched OFF, the "USER LED"
(at CPU front) switches OFF.

b) Q3ACPU, Q4ACPU, e Iithe displayed annunciator number.
Q4ARCPU (CPU front LED display) is switched
OFF, the new annunciator No.
stored at SD62 is displayed.
¢ If an annunciator No. other than
. that displayed is switched OFF, the
displayed No. will not change.
¢ If all the SD64 to SD79 annunciator
Nos. are switched OFF, the LED
display will switch OFF.

POINT]|

(1) If the RST Fi: or LEDR instruction is not executed after switching
an annunciator OFF by the OUT F instruction, the "processing at
annunciator OFF" (see(b) above) will not occur.

4.2.6 Edgerelay (V)
(1) Definition

(a) An edge relay is a device which stores the operation results
(ON/OFF information) from the beginning of the ladder block.
Edge relays can only be used at contacts, and cannot be used as
coils.

X0 X1 X10 V1
l—» Edge relay

Stores the X0, X1, and X10 operation results

4. DEVICE

MELSEC-QnA

(b) The same edge relay number cannot be used twice in programs
executed by the QnACPU.

(2) Edge relay applications

Edge relays are used for detecting the leading edge (OFF—ON) in
programs configured using index qualification.

[Ladder example]

X071%1 VO71 1
Il ? MOZ1

ON

[Timing chart]

X0 OFF j] ‘
oN
When Z21=0 VO OFF
on : ’
MO OFF
1 scan l
oN
Xt off |
ON 1 scan ON at X1 leading edge
When Z1=1 Vi OFF
OoN
M1 OFF [|

1 scan

1) *1: The ON/OFF information for X0Z1 is stored at the VOZ1 edge relay.
For example, the X0 ON/OFF information is stored at VO, and the X1
ON/OFF information is stored at V1.

4. DEVICE

4.2.7 Linkrelays (B)
(1) Definition

(a) Alink relay is the QnACPU relay used to refresh the QnACPU
from the MELSECNET data link module and MELSECNET/10 net-
work module’s link relay (LB).

QNACPU MELSECNET/10 network module
Link relay —I
t

Link relay

l Link refresh
setting range

| !
1 I
! Link fresh %
1
I

B

Internal relays or latch relays can be used for data ranges not used by the
MELSECNET data link system and MELSECNET/10 network system.

+ Range where no link relay latch occurs...Internal relay

» Range where link relay latch occurs........ Latch relay

(b) There are no restrictions regarding the number of contacts (N/O
contacts, N/C contacts) used in the program.

No restrictions regarding the quantity used.
BO switches ON at X0 OFF-ON.

The link relay (BO) ON can only be used for internal
QnACPU processing, and cannot be output externally.

BO ON/OFF information is output from the output
module to an external destination.

Fig.4.5 Link Relay

(2) Using link relays in the MELSECNET/10 network system

(a) Hf link relays are used at the MELSECNET/10 network system, the
host station’s ON/OFF information can be read to another station
for use there. Use of link relays in the MELSECNET/10 network
system permits the transfer of ON/OFF information between the
control station and a normal station, and between normal stations.

(b) In order to use link relays in the MELSECNET/10 network system,
a network parameter setting is required at the control station.
Link relays for which no network parameter setting has been desig-
nated can be used as internal relays or latch relays.

4. DEVICE

(3)

Use in a MELSECNET data link system.

(a) When link relays are used with a MELSECNET data link system,
the ON/OFF statuses at the host station can be read and used at
other stations.

Link relays enable the exchange of ON/OFF information between
a master station and local station of a MELSECNET data link sys-
tem, or between local stations.

(b) To allow use in a MELSECNET data link system, link parameters
must be set at the master station.
Link relays that are not set in the link parameters can be used as
substitutes for Internal relays.

1) For details regarding the network parameters, refer to the For QnA/Q4AR
MELSECNET/10 Network System Reference Manual.

2) For details regarding link parameters, refer to the MELSECNET & MELSECNET/B
Data Link System Referance Manual.

4. DEVICE

4.2.8 Special link relays (SB)
(1) Definition

(a) Special link relays (SB) are used to transmit ON/OFF data be-
tween the MELSECNET/10 network module and the user program.

(b) Because special link relays are switched ON and OFF in accord-
ance with various problems which may occur during a data link,
they serve as a tool for identifying data link problems.

(2) Number of special link relay points
There are 2048 special link relay points (SB0 to SB7FF) for each MEL-
SECNET/10 network module. As shown below, the default "number of
points” setting for QnACPU special link relays is 5612 points per mod-

ule.

S80

to For {st
SB1EF| network module
SB200

to For 2nd
SB3FF| network module
SBt:OO For 3rd
SBSFF network module
SB600 For 4th

to network module
SB7FF

1) For details regarding special link relays used at the QnACPU, refer to the QnACPU
Programming Manual (Common Instructions).

42,9 Step relays (S)

A step relay is an SFC program device. For details regarding procedures for
using step relays, refer to the QnACPU Programming Manual (SFC).

POINTI

Because the step relay is an SFC program dedicated device, it cannot
be used as an internal relay in the sequence program.

If used in this manner, and SFC error will occur, and system operation
will be stopped (system down).

4. DEVICE

4.2.10 Timers (T)

QnACPU timers are of a forward timer type, with the time measurement
beginning when the coil switches ON, and ending (time out) when the present
value matches the setting value. The contact is switched ON when a "time out"
occurs. There are 3 timer types: low-speed timers, high-speed timers, and
retentive timers.

POINT’

When an OUT T instruction is executed, the coil of the timer is turned
ON/OFF, its present value is updated, and its contact is turned ON/OFF.
At END processing, the present value of the timer is not updated and

its contact is not turned ON/OFF.

Definition

(a) Low-speed timers are those that are only operative while the coil
is ON.

(b) The time measurement begins when the timer’s coil switches ON,
and the contact switches ON when a "time-out" occurs. When the
timer’s coil switches OFF, the present value becomes "0", and the
contact switches OFF.

[Ladder example]

X0 K10 When X0 switches ON, the T0 coil
{ switches ON, and the contact switches

] 10 ON 1 second later. (The low-speed timer
measures time in 100 ms units)

[Time chart]

ON
T0 CFF
\ —
TO coil OFF '
1 second ﬁ[ON
TO contact OFF T *#

(2) Measurement units

(a) The default time measurement units setting for low-speed timers
is 100 ms.

(b) The time measurement units setting can be designated in 10 ms
units within a 10ms to 1000 ms range.
This setting is designated in the "PC system settings" parameters.

Definition

(a) High-speed timers are timers which are only operative while the
coil is ON.

4. DEVICE

MELSEC-QnA

(b) The time measurement begins when the timer’'s coil switches
ON, and the contact switches ON when a "time-out" occurs. When
the timer's coil switches OFF, the present value becomes "0, and
the contact switches OFF.

[Ladder example]

/ High-speed timer display
When X0 switches ON, the T200 coll
X0 .
1 /H KZQO switches ON, and the contact
f N T200 switches ON 2 seconds later. (The
high-speed timer measures timen
10ms units)
[Time chart]
ON
X0 OFF
ON
T200 coit OFF) B
2 seconds
» on
T200 contact OFF T ‘1

(2) Measurement units

(a) The default time measurement units setting for high-speed timers
is 10 ms.

(b} The time measurement units setting can be designated in 1ms
units within 2 1 ms to 100 ms range.
This setting is designated in the PC system settings
parameters. *

(1) Definition
(a) Retentive timers measure the "coil ON" time.

(b) The measurement begins when the timer coil switches ON, and
the contact switches ON when a time-out (coil OFF) occurs. Even
when the timer coil is OFF, the present value and the contact
ON/OFF status are saved. When the coil is switched ON again,

the time measurement resumes from the present value which was
saved.

(c) There are 2 retentive timer types: low-speed retentive timer, and
high-speed retentive timer.

(d) The RST Ti: instruction is used to clear (reset) the present value
and switch the contact OFF.

[Ladder example]

X0 K200
! / sTo X0 ON time is measured as 20
| AN seconds.

X1 Retentive timer display
—t [RsT st When X1 switches ON, the STO

contact is reset, and the present
value is cleared.

4. DEVICE

MELSEC-QnA
[Time chart]
ON

X0 OFF

ON
7o eel il 5 seconds

L 15 seconds N /

« l‘ ,l
nggeresent ¢ to 150 / X 151 to 200 X0~

Present value is saved when coil switches ON

TO contact OFF j; , a
Instruction

RST STO Contact remains ON when coil switches gxecution

instruction ~ ﬂ

ON
X1 OFF

(2) Measurement units

(a) The measurement units settings for retentive timers are the same
those for low-speed timers and high-speed timers.
« L ow-speed retentive timer : Some as low-speed timer
» High-speed retentive timer: Same as high-speed timer

1) *: In order to use retentive timers, a retentive timer "number of
points used"” setting must be designated in the PC device settings
parameters.

(a) When an OUT T:i: instruction is executed, the following processing

occurs: timer coil ON/OFF, present value update & contact

ON/OFF processing. Timer present value update and contact
ON/OFF processing do not occur at END processing.

[Ladder example]

X0 K10
| e
I \TO

[Processing at OUT T0 instruction]

END ouT TO END
Sequence program, : 1

(b) When the OUT T:: instruction is executed, the present value is
added to the scan time measured at the END instruction.
If the timer coil is OFF when the OUT T:: instruction is executed,
the present value is not updated.

[Ladder example]

4. DEVICE

. MELSEC-QnA
[Present value update timing]
ouT T0 ouT TO ouT TO QuT TO QuT TO OUT TO
END proc- |END proc-{ END proc-{END proc- |END proc- |END proc-
essing essing essing essing essing essing
Program : T - : : i : i :
i I | i !] 1] i 1 !
i i] P T oo |
ON bbb
I | 1] 1 I 1
X0 external input ﬂ b | i Lo o
S | A
iON | | L i P b
| 1 i i] § f 1
QnAGPU's X0 OFF Lo ! : o |
{ P | | P i
| 1ON | L E L |
! 1 1 I 1 1 i 1 1
T0 coil oFF L I b
TR T A T U R O N
A
‘ OFF ! i [|
TO contact E : ‘ X : : : T 2 : ':
to2p1 203 1rzir 2 5 b2 23
10 ms measurement +- ‘\:,\} ! . i l | 4 :, — i '\E i I
i 1 | l | 1 I d 1
1 1 ™ | :\ 1 :\
i] t ! 1 ! ' H
Measured value at R \3 '\2 N R 4*2 3
- : l | L L |
END instruction ; S T G S S NG :
i i \.\ | i \ i H i
] i
\IL\A [\ L i
TO present value | 04222 | 243=5 | 5+2=7 | 7+3=10
| | { ! :
Input reading timing (-(1 scan + Timer setting) to +1 scan)
(+1 scan)

(c) The timer response accuracy from the point when input (X) read-
ing occurs, until the point when the output occurs is +2 scans.

The following are a few precautions regarding timer use.

(a) A given timer cannot be designated (by OUT T:i3) more than once
in a single scan. If it is, the timer's present value will be updated
at each OUT T:: instruction, resulting in a meaningless measure-

ment. .
out ouT ouT ouT ouT
END TIT3 i T3 END T 103
Sequence _ ! { L 1 L
rogram
prog l | I Present value

1 scan is updated

T

(b) When the timer is not executed at each scan
An OUT T1 instruction cannot be given by a CJ instruction during a timer
coil (Example: T1) ON.
While the OUT T:: instruction is being given, the current value is not
updated.
In addition, when a timer exists in the subroutine program, pay attention to
the following. During the timer coil (Example: T1) ON, be sure to execute a
subroutine call which includes an OUT T1 instruction only one time at each
scan.
In the case that the subroutine call is not executed at each scan, the
current value is not updated.

(c) Timers cannot be used in interrupt programs.

(d) If the timer set value is "0", the contact goes ON when the OUT T::
instruction is executed.

4-24

4. DEVICE

(e) If the setting value changes to a value which is higher than the
present value following a timer "time-out®, the "time-out" status
will remain in effect, and timer operation will not occur.

(f) If atimer is used at a low-speed execution program, the present
value will be added to the low-speed scan time when the OUT Ti:
instruction is executed.

(g) If two timers are used, the ON/OFF ladders should be created as
shown below.

T0 K10
—l } <T1 >— 1 second measurement following
TO ON
T K10
{1 1 second measuremeant following
i e T1 OFF
T0
—l } < MO >— ON/OFF repeated every 1 second

(h) When creating a program in which a timer contact is used as the
trigger for counting by a different timer, write the program starting
from the counter that counts later.

In the cases below, if programming is done in the same order in
which the timers count, all the timers will be ON in the same scan.
e When a high-speed timer is used with a set value shorter than
the scan time
» When a low-speed timer is used with a set value of "{1"

Example

» When timers TO to T2 are programmed in the reverse of the
order in which they start counting:
1 K1

I[<72 >— Timer T2 starts counting in the scan
following the one in which the T1
K1 contact comes ON.

—_

1&3

<'“ >— Timer T1 starts counting in the scan
following the one in which the TO
contact comes ON.

K1
<TU >— Timer TO starts counting when X0
comes ON.

* When timers TO to T2 are programmed in the order in which
they start counting.

X0
—l } <T° >— Timer TO starts counting when X0
comes ON.

;_{a*
)
Y

When the TO contact comes ON, the
contacts of timers T1 and T2 come

T1 K1 ON.

4. DEVICE

4.2.11 Counters (C)

QnACPU counters are "up counter” types, with the contact being switched
ON when the count value equals the setting value (count-out condition).
There are two counter types: counters which count the number of input con-
dition start-ups (leading edges) in sequence programs, and counters which
count the number of interrupt factor occurrences.

[POINT

When an OUT CIlinstruction is executed, the following counter process-
ing occurs: coil ON/OFF, present value update (count value + 1), and
contact ON.

Counter present value update and contact ON processing do not occur
at END processing.

(1) Definition

A counter is a device which counts the number of input condition leading
edges in sequence programs.

(2) Count processing

(a) When and OUT CII instruction is executed, the follwing counter
processing occurs: coil ON/OFF, present value update (count value
+ 1), and contact ON/OFF.
Counter present value update and contact ON/OFF processing do
not occur at END processing.

[Ladder example]
; X0 K10 -
| c

[Processing at OUT CO instruction (X0: OFF-ON)]

Sequence END OuT €O END

program’

(b) The present value update (count value + 1) occurs at the leading
edge (OFF — ON) of the OUT CI: instruction.
The present value is not updated in the following OUT CtJ instruction
statuses: OFF, ON — ON, ON — OFF

[Ladder example]

! X0 K10
|
|

t{ co >

4. DEVICE

MELSEC-QnA
[Present value update timing]

Sequence END ouT CO END ouUT €O END OUT CO

program ' '. : ! : !

1 1 1

ON | | |

] 1]

OFF | 1 i H

X0 !] !

| oN ! !

OFF f 1 f

CO coil l l
Present value update Present value

update

(c) Multiple counters can be used within a single scan to achieve the
maximum counting speed.
In such cases, the direct access input (DXI2) method should be used
for the counter input signals. *1

our ouT out out out
END G G G eno G C:
Sequence 1 1 i L | L 1
program l
OUT O[]
| | l | execution
intervals

(3) Resetting the counter

(a) Counter present values are not cleared even if the OUT C instruction
switches OFF. Use the RST C:: instruction to clear the counter’s
present value and coil and the contact are switched and switch the
contact OFF.

(b) The count value is cleared and coil and the contact are switched
and the contact is switched OFF at the point when the RST Ci:
instruction is executed.

[Ladder example]
X1

} [RST CO
[Present value update timing]
Sequence END RST €O END RST €O END RST €O
! L ! 1] 1
program ; i
ON] 1
OfF i l [——;—
Execution ! !
RST CO o ‘\tﬂ M
instruction T T
Count value cleared Count value cleared &
& contact OFF contact OFF

4. DEVICE

(4) Precautions for resetting the counter

Do not reset the counter if the counting condition is satisfied.
If the counter is reset, an erroneous count may be added.

If resetting condition X6 is turned on in the circuit example shown below to execute
the RST CO instruction while the count condition X5 is active, the CO coil is turned
off then on again, so that the rising edge of the CO coil is detected and the current
value of CO is updated (to increase the count by one).

[Circuit example]

Count condition X5 K10

{ co

Reset condition X6
} [RsT co

[Timing for updating current value]

OouUT RST ouT RST OouUT RST

Sequence END co co END Co co END o Co END
program
X5 OFF

OFF
X6

OFF \
CO0 coil \ 4
CO count 9 10 Y 1

To turn reset condition X6 on while the count condition X5 is active, use a
differential contact to count at the rising edge of count condition X5.

[Circuit example]

X5 K10
f Cco
X6

| [RST CoO

(5) Maximum counting speed

The counter can count only when the input condition ON/OFF time is
longer than the execution interval of the corresponding OUT C: instruc-
tion.

The maximum counting speed is calculated by the following formula:

Maximum counting speed (Cmax) = L L [times/sec]

100 t

n: Duty (%) *2
t : Execution interval or OUT C:i: instruction

4-27-1

4. DEVICE

MELSEC-QnA

1) *1 : See Section 4.2.1 for details regarding direct access inputs.

2) *2 : The "duty" is the count input signal’s ON-OFF time ratio expressed as a per-
centage value.

L T] T2]
|on 1 l
OFF I
Count input signal ————J l
Tt Tt
WhenT1<T2:n= x 100 {%) When Ti<T2:n= x 100 (%)
1472 T1+T2

(1) Definition
Interrupt counters are devices which count the number of interrupt factor
occurrences.

(2) Count processing

(a) The interrupt counter's present value is updated when an interrup-
tion occurs. If is not necessary to create a program which includes
an interrupt counter function.

(b) Interrupt counter operation requires more than the simple designa-
tion of a setting value.
To use the interrupt counter for control purposes, comparison in-
structions (=, <=, etc.) must also be used to enable comparisons with
the setting value, with an internal relay (M), etc., being switched ON
or OFF according to the comparison result. The figure below shows
a sample program in which MO is switched ON after 10 interrupt
inputs occur. (In this example, "C300" is the interrupt counter No.
corresponding to 10.)

—] /7
H = K10 c300 | { Mo >—1

4. DEVICE

(3) Setting the interrupt counter

(a) In order to use interrupt counters, at first interrupt counter No. set-
ting must be designated in the PC system settings parameters. 48
points are then allocated for interrupt counters, beginning from the
“first counter No." which is designated.

[*PC system settings" screen]

1. Slow [1P@Ime 5. Comnon Pointer ¥ from [-1

2_ Fast [10lms
6. General Data Processl 1JUnit/try

2. RUN-PAUSE Contact RUN X[1 7. % of Free Slote <16 >
PRUSEXL 1 o systen Interrupt First interrupt
o eyt R gy, oL counerNo.s
4. Output at STOP->RUN 4] 139 Const Intervall 28Ims designated
1.<=> Prior to Calc §. I31 Const Intervall 18Ims here'

2.<C > After one Scan

Cance1(N>

Space:Select kEsc:Cloce

If C300 is designated as the first interrupt counter No., numbers
C300-C347 will be allocated for interrupt counters.

C300 10

C301 H

C302 12 Interrupt counters (48 points)
C347 147

Values corresponding to the interrupt
counter Nos.

(b) In order to use an interrupt counter, an "interruption permitted"
status must be established at the main routine program.

(4) Precautions

(a) One interrupt pointer is insufficient to execute interrupt counter
and interrupt program operation. Moreover, an interrupt program
cannot be executed by an interrupt pointer designated for an inter-
rupt counter.

(b) If the processing items shown below are in progress when an inter-
ruption occurs, the counting operation will be delayed until proc-
essing of these items is completed.

Even if the same interruption occurs again while processing of
these items is in process, only one interruption will be counted.
» During execution of sequence program instructions

¢ During general data processing in END processing

e During interrupt program execution

4. DEVICE

(¢) The maximum counting speed of the interrupt timer is determined
by the longest processing time of the items shown below.
« Instruction with the longest processing time among the instruc-
tions used in the program
* General data processing time at END processing ...Max. 2 ms
« Interrupt program processing time

1
Maximum counting speed = : — [PPS]
[Longest processing time + [500 pusec x number of
of the above 3 times] interrupt counter points]
{Example]
¢ Longest instruction processing time... 0.3 ms
e Interruptprogram.......... ...t None
» Number of interrupt counter points.... 2
Since here the END processing time of 2 ms (0.002 sec) is the highest
value:
1
Max. counting speed = ~333 [PPS]

0.002 + 0.0005 x 2

Based on this maximum counting speed, the input pulse signal must be as
follows:

S N R N

L 3 ms or more |
e

£l

(d) The use of too many interrupt counters will increase the sequence
program processing time, and may cause a "WDT ERROR?". If this
occurs, either reduce the number of interrupt counters, or reduce
the counting speed for the input pulse signal.

(e) The interrupt counter's count value can be reset by using the RST
Ci: instruction in the sequence program prior to the FEND instruc-
tion.

(f) The interrupt counter’s count value can be read out by using the
sequence program MOV instruction.

4.2.12 Data registers (D)
(1). Definition

(a) Data registers are memory devices which store numeric data (-32768
to 32767, or 0000H to FFFFH) in the QnACPU.

(b) Data registers consist of 16 bits per point, with reading and writing
executed in 16-bit units. ,

b15 to b0
Dn | E
1

T

4. DEVICE

MEL

SEC-QnA

(c) If the data registers are used for 32-bit instructions, the data will be
stored in registers Dnand Dn + 1. The lower 16 bits of data are stored
at the data register No. (Dn) designated in the sequence program,
and the higher 16 bits of data are stored in the designated register
No. + 1 (Dn + 1).
For example, if register D12 is designated in the DMOV instruction,
the lower 16 bits are stored in D12, and the upper 16 bits are stored

in D13.

[DMov K500000 D12

Processing object: D12, D13

l D13 ' D12 l
Upper Lower 16 I
16 bits

bits
!

(d) Data stored by the sequence program is maintained until another
data save operation occurs.

4.2.13 Linkregisters (W)

(1) Definition

(a) A link register is the QnACPU memory used to refresh the QnACPU
with data from the MELSECNET/10 network module and MELSEC-
NET/10 network module link registers (LW).

Link registers are used to store numeric data (-32768
00004 to FFFFH) at the QnACPU.

QnACPU

Link register

WO

AAYAYAAVAYAVAVAVAVA VAL

Link refresh

to 32767, or

MELSECNET/10 network module

LWO

Link register

Link refresh
setting range

AAAYAAVAVAVAVAVAVAVAY

When used outside the MELSECNET data link system, MELSEC-
NET/10 network system’s range, link registers can serve as data

registers.

(b) Link registers consist of 16 bits per point, with reading and writing

executed in 16-bit units.

to

4. DEVICE

(2).

(3)

MELSEC-QnA

(c) If the link registers are used for 32-bit instructions, the data is stored
in registers Wn and Wn + 1. The lower 16 bits of data are stored in
the link register No. (Wn) designated in the sequence program, and
the higher 16 bits of data are stored in the designated register No.
+1 (Wn+1).

For example, if register W12 is designated at the DMOV instruction,
the lower 16 bits are stored in W12, and the upper 16 bits are stored
in W13. '

l———\ }——[DMOV K500000 313]—{

Processing object: W12, W13

| wiz | w2 |

Higher Lower
16 bits 16 bits
T J

T

(d) Data stored by the sequence program is maintained until another
data save operation occurs.

Using link registers in a MELSECNET/10 network system

(a) If link registers are used in a MELSECNET/10 network system, the
host station’s numeric data can be read to another station for use
there.

Use of link registers in the MELSECNET/10 network system permits
the transfer of numeric data between the control station and a normal
station, and between normal stations.

(b) In order to use link registers in the MELSECNET/10 network system,
network parameter settings must be made at the control station.
Link registers not set in the network parameter settings can be used
as data registers.

Using link registers in MELSECNET data link systems

(a) If link registers are used at the MELSECNET data link systems, the
host station’s numeric data can be read to another station for use
there.

Use of link registers in a MELSECNET data link systems permits the
transfer of numeric data between the master station and a local
station, and between local stations.

(b) In order to use link registers in the MELSECNET data link system,
network parameter settings must be made at the control station.
Link registers not set in the network parameter settings ¢an be used
as data registers.

(1) For details regarding network parameters, refer to the For QnA/Q4AR
MELSECNET/10 network System Reference Manual.

(2) For details regarding link parameters, refer to the MELSECNET & MELSECNET/B
Data Link System Reference Manual.

1N
|

W

N

4. DEVICE

4.2.14 Special link registers (SW)

(1) Definition

MELSEC-QnA

(a) Special link registers are used to transfer data between the MEL-
SECNET/10 network module and the user program.

(b) Because the data link information is stored -as numeric data, the
special link registers serve as a tool for identifying the locations and

causes of faults.

(2) Number of special link register points
- There are 2048 special link register points (SWO0 to SW7FF) used by
MELSECNET/10 network modules. As shown below, the default "num-
ber of points" setting for QnACPU special link registers is 512 points

per module.
Special link registers
iwo For 1st
SWi1FF | network module
St,zvzoo For 2nd
swaFf | network module
stxvmo For 3rd
swser | network module
W00 For 4th
SW7FF network module

1) For details regarding special link registers used in the QnACPU, refer to the

QnACPU Programming Manual (Common Instructions).

4. DEVICE
MELSEC-QnA

4.3 Internal System Devices

Internal system devices are devices used for system operations. The alloca-
tions and sizes of internal system devices are fixed, and cannot be changed
by the user.

4.3.1 Function devices (FX, FY, FD)
(1) Definition

(a) Function devices are devices used in sub-routine programs with
arguments to permit data transfers between the sub-routine pro-
gram with argument, and the CALL source for that sub-routine.

r- Example: ------ebeer e 1
If FX0 and FD1 are used at the sub-routine program, and if M0 and DO
are designated by the sub-routine CALL instruction, the MO ON/OFF
data is transferred toFXO0, and the DO data is transferred to FD1.

[Sub-routine program CALL source] [Sub-routine programy]

) FX0
I
'—[CALL PO MO DO]— PO —-| '—————[Mov FD1 RO
| A

(b) Because the function devices used for each sub-routine program
CALL source can be set, the same sub-routine program can be
used without regard to other sub-routine CALL sources.

(2) Types of function devices
There are 3 function device types: function input devices (FX), func-
tion output devices (FY), and function register devices (FD).

(a) Function input devices (FX)

e These devices are used to designate inputs of ON/OFF data to a
sub-routine program.

¢ In the sub-routine program, these devices are used for reading
and processing bit data designated by sub-routine with
argument CALL instruction.

+ All the QnACPU bit data designation devices can be used.

(b) Function output devices (FY)

+ These devices are used to designate outputs of sub-routine
program operation results (ON/OFF data) to the sub-routine
program CALL source.

e At sub-routine programs with arguments, the operation results
are stored at the designated device.

» All bit data designation devices except QnACPU inputs (X, DX)
can be used.

1) Function devices can only be monitored during execution of a subroutine program
with an argument.
When monitoring function devices, designate a step number in the subroutine with
argument for which the function device is used.

4-34

4. DEVICE

4.3.2 Special relays (SM)

(1)

(2)

(c) Function registers

» These devices are used to designate data transfers between
the sub-routine CALL source and the sub-routine program.

e The function register input/output condition is automatically
determined by the QnACPU. If the sub-routine program data is
the source data, the data is designated as sub-routine input data.
If the sub-routine program data is the destination data, the data
is designated as sub-routine output data.

* 1 point occupies 4 words.

¢ The QnACPU word data designation device can be used.

1) For details on the use of function devices, see QnACPU Programming Manual
{(Common Instructions).

Definition

(a) Special relays are QnACPU internal relays with fixed applications.
They are used for ON/OFF data communications between
the QnACPU system and the user program.

Special relay classifications

Special relays are classified according to their applications, as shown

below.

(a) For fault diagnosis : SM0-SM199

(b) Sysiem information: SM200-SM399

(c) System clock/system counter : SM400-SM499

(d) Scan information : SM500-SM599

(e) Memory card information : SM600-SM699

(f) Instruction related : SM700-SM799

(g) For debugging : SM800-SM899
(h) Latch area : SM900-SM999
(i) For ACPU : SM1000-SM1299

1) For details regarding special relays which can be used by the QnACPU, refer to
the QnACPU Programming Manual (Common Instrugtions).

4. DEVICE ‘

4.3.3 Special registers (SD)
(1) Definition
(a) Special registers are QnACPU internal registers with fixed applica-
tions. They are used for ON/OFF data communications between
the QnACPU system and the user program.
(2) Special register classifications
Special registers are classified according to their applications, as
shown below.
(a) For fault diagnosis : SD0 to SD199
(b) System information: SD200 to SD399
(c) System clock/system counter : SD400 to SD499
(d) Scan information :SD500 to SD599
(e) Memory card information : SD600 to SD699

(f) Instruction related : SD700 to SD799

(g) For debugging : SD800 to SD899
(h) Latch area : SD900 to SD999
(iy For ACPU : SD1000 to SD1299

1) For details regarding special relays which can be used by the QnACPU, refer to
the QnACPU Programming Manual {Common Instructions).

4.4 Link Direct Devices (Ji:XJ)
(1) Definition
(a) At END processing, a data refresh (data transfer) operation oc-
curs between the QnACPU and the MELSECNET/10 network sys-
tem modules. Link direct devices are used at that time to directly
access the link devices in the MELSECNET/10 network modules.
(b) Designation method

1) Link direct devices are designated by network No. and device No.

Designation method:JIN\G2
~A

Device No.
-fnput ... L. L. X0 or later
soutput L. YO or later
-Linkrelay. BO or later
- Link register WO or later
- Link special relay . . SBO or later
- Link special register . SWO or later

Network No. (1-255)

4. DEVICE
MELSEC-QnA

2) When inputs, outputs, and link special relays are used as word
data or double word data, digit designation is necessary.

Designation method:Ji\KIJ (2
FaA TR AN

l—- Device No.

sdnput oL X0 or later
soutput. L. YO or later
- Link special relay . . SBO or later

Digit designation

-Worddata K1 to K4
- Double word data . . K1 to K8

Example : For link register 10 (W10) of network No.2, the
designation would be "J2\W10"

}———{ MOVP K1 1
1__) VP K100 W]—l Network modules at network No.2

wa

F»W10

3) For a bit device (X, Y, B, SB), digit designation is necessary.
Designation example :J1/1X0, J10/K4B0

(2) Designation range
Link direct device designations are possible for all athe link devices in
network modules.

Device outside the range specified by the network
refresh parameters can also be designated.

(a) Writing

1) Writing is executed within that part of the link device range set
as the send range in the common parameters of the network
parameters that is outside the range specified as the "refresh
range” in the network refresh parameters.

However, when an output outside the refresh range is turned ON,
even if the QnACPU is set to the STOP status it will not be
refreshed and therefore will not go OFF.

wow Network module
B B - I —
BO LB O .
Refresh I I
range | Iwm " |Link range
: jing
| I range

L |

Writing range

4. DEVICE :
MELSEC-QnA

2) Although writing is also possible in the “refresh range" portion of
the link device range (specified by the refresh parameters), the
link module’s link device data will be rewritten when a refresh
operation occurs. Therefore, when writing by link direct device,
the same data should also be written to the QnACPU related
devices (designated by the refresh parameters).

[Refresh parameter settings]

¢ Network No.: 1
¢ QnACPU (W0 to W3F) < network modules (LW100 to
LW13F)

[Sequence program]

*101" is written to link module
Fr———{ Mov k1o yrwiot H w101 when the MOV
instruction is executed.

*100" is written to link module
—l MOV K100 W1
LW101 when a refresh occurs.

[Writing timing]
QnACPU Network module

[Writing at instruction l r
! execution H

F——{mov K100 J1\w1o1

|
—

———[MOV K100 w1
w0

W1 1t W01

Writing at instruction execution ’

e O —

Writing at refresh operation

e

3) When data is written to another station’s writing range using a
link direct device, the data which is received from that station will
replace the written data.

(b) Reading
Reading by link direct device is possible in the entire link device
range of network modules.

4. DEVICE

MELSEC-QnA

(3) Differences between "link direct devices" and "link refresh
"The differences between "link direct devices" and "link refresh” are
shown in Table 4.4 below.

Table 4.4 Differences between "Link direct Devices" and "Link Refresh®

Item Link Direct Device Link Refresh
Link relay JU/K4BO or later BO or later
Link register JUWO orlater WO or later
Program notation method Link special relay JII/K4SBO or later SBO or later
Link special -
register JIISWO or later SWO or later
Number of steps 2 steps 1 step
All network
. Parameter
Network module access range module link :
devices designated range
Access data guarantee range Word units (16 bits)

POINT

(1) Only one network module capable of writing/reading link direct de-
vices can be used per network number.
If two or more network modules are installed at the same network
number, the network module with the lowest first I/0 number will be
the one that handles writing/reading using link direct devices.
For example, if station No.1 and station No.2 network modules are
installed in network No.1 as shown in the figure below, the station
No.2 network module will handle link direct device operations.

/ / Network No.1

Power | QnA |Network| Network
supply | CPU |module | module
module

Station |Station
No.2 No.1

\——— Writing/reading using link

direct devices not possible

Writing/reading using link
direct devices possible

1) For details regarding the MELSECNET/10 network system, refer to the
» For QnA/Q4AR MELSECNET/10 Network System Reference Manual.
2) For details regarding network parameters, common parameters, and network
refresh parameters, refer to the following manuals:
¢ Detailed information _
For QnA/Q4AR MELSECNET/10 Network System Reference Manual
» Setting procedures
SWIOIVD-GPPQ Type GPP Function Software Package Operating Manual (Offline)

4. DEVICE

4.5 Special Function Module Devices (UII\GIJ)

1

*__H___{D/ UO\GE02 K10000 DO I
1 H

(2)

Definition

(a) The special function module devices allow the QnACPU to directly
access the buffer memories of special function modules which are
installed at the main base unit and extension base unit. These de-
vices cannot be used in this manner for special function modules
installed at remote stations of a MELSECNET/10 network system
or a MELSECNET (ll, /B) data link system.

(b) Special function module devices are designated by the special
function module input/output No., and the buffer memory address.

Designation method: UI\GI
Fa a A al

L— Buffer memory address (setting range: 0-16383
(decimal)) *1
Special function module input/output NO.
» Setting: If the input/output No. is a 3-digit valus,

designate the first 2 digits.
For X/Y1FO...X/Y/1FO
AN

L. Designate "01F*
» Setting range: 004 to FEH

To convert the X-axis present value (buffer memories: 602, 603)
(X-axis of AD71 positioning module installed
at slot 0 of the base unit) to "mm" units (1/1000), and store it in DO
and D1, designate the following:

AD71

602 | present value (lower)
« | 603 | Present value (higher) i

e ————

Processing speed

The processing speed for special function module devices is the

total of the "FROM/TO instruction processing speed" and the
*instruction processing speed”.

If the same buffer memory of the same special function module is
used two or more times in a sequence program, the processing speed
can be increased by using the FROM instruction to read that buffer
memory data to a QnACPU device.

1) *1: For details regarding buffer memory addresses and applications, refer to
the manual for the special function module in question.

2) *2: The quotient and remainder are stored in DO to D3.

Quotient) Remainder
D1 DO D3 D2

rUpper 16 bits | Lower 16 bits I LUpper 16 bits | Lower 16 bits

4. DEVICE

4.6 Index Registers (Z)
(1) Definition

(a) Index devices are used in the sequence program for indirect set-
ting (index qualification) designations.

(b) There are 16 index registers (Z0-Z15).

(c) Index registers consist of 16 bits per point, with reading and writ-
ing occurring in 16-bit units.

b15 to b0

Zn[

="

—

f——m

(d) If the index registers are used for 32-bit instructions, the data is
stored in registers Zn and Zn +1. The lower 16 bits of data are
stored in the index register No. (Zn) designated in the sequence
program, and the upper 16 bits of data are stored in the desig-
nated index register No. + 1 (Zn + 1).

For example, if register Z2 is designated in the DMOV instruction,
the lower 16 bits are stored in Z2, and the upper 16 bits are
stored at Z3.

l M
I | DMOvV DO 72

|———— Processing object

Z3 Z2

| | |
Upper ;| Lower

l 16 bits] 16 bits |

3 T

(2) Index register processing at program switching
When switching from a scan execution or low-speed execution pro-
gram to another program type, the index register (Z0-Z15) data is
saved (protected).
This data is reset when switching back to the scan execution or low-
speed execution program occurs.

1) For details regarding index qualifications using the index registers, refer to the
QnACPU Programming Manual (Common Instructions).

4. DEVICE

MELSEC-QnA

(a) Switching between scan execution and low-speed execution
programs

1)

2)

When switching from a scan execution program to a low-speed
execution program occurs, the scan execution program’s index
register data is saved, and the low-speed execution program’s
index register data is reset.

When switching from a low-speed execution program to a scan
execution program occurs, the low-speed execution program’s
index register data is saved, and the scan execution program’s
index register data is reset.

' v 1

| [|

i
! — o : ——>! Low-speed
Executed program | Scan execution |Switch-{LOW-speed lswitch.j Scan execution Switchd execution
prog ! program ing execution pro-ling program in
| Pprog gram ! ! g program
|
T
Z0=1 !

Scan execution program

San

Re-
set

Re-
set

Saved

i
I
I
|
I
I
1
|
T
I
:
1
Saved !

(., Z=0—Z0=3*" 20=1 —)ZO=6*27

X

i
|
i
i
T
! Z0=3
i
Re- !
i set
i
1
i
I
1
1
1
1
1

I I t {
.For scan execu- | \4 ' j \4‘»
Index | tion programs Z0=0 b 20=1] Z0=1 Z0=14 Z0=1 Z0=6] \ Z0=6
register i | I i
storage : : — i
Zo=1 Ezozo Z0=0 : Z°=3i 0= izo:s' Z0=3
1 1] { 1

*1: For a low-speed execution program, Z0 is changed to 3.
*2: For scan execution program, Z0 is changed to 6.

Word devices should be used for exchanges of index register
data between scan execution programs and low-speed execution
programs.

(b) Switching between scan/low-speed execution programs and inter-
rupt programs

1)

When the scan/low-speed execution program is switched to the
interrupt program, the scan/low-speed execution program’s in-
dex register value is first saved, and is then transferred to the
interrupt program.

2) When the interrupt program is swithed to the scan/low-speed
execution program, the saved index register value is reset.
{ Switch-1| i i
| Scan/low-speed ing ! IReset | goan/low-speed
Executed program execution program —>E Interrupt program | ———> execution pprogram
Trans-
Index register ferred | .
value Z0=1 » Z0=1—-20=3 ! Z0=1
! Saved ! Reset
i
1
Index register storage [!)
area (for scan/low- | 1 _
speed execution pro- Z0=0 > 20=1 Z0=1 Z0=1 Z0=1
grams) ! ! !
i I 1

*: At interrupt programs, Z0 is changed to 3.

Word devices should be used to transfer index register data from
an interrupt program to a scan execution program or low-speed
execution program.

4-42

4. DEVICES

4.7 File Registers (R)
(1) Definition
(a) File registers are expansion devices for data registers.

(b) File register data is stored in files in the QnACPU memory card.
Therefore, the memory card is required when using file registers.

| I
| I_MOV K100 R2
Memory card

File registers

RO
R1
R2

"100" is written to R2

(c) File registers consist of 16 bits per point, with reading and writing
occurring in 16-bit units.
b15 to B0

Rn

F——A

(d) If the file registers are used for 32-bit instructions, the data will be
stored in registers Rn and Rn + 1.
The lower 16 bits of data are stored in the file register No. (Rn)
designated in the sequence program, and the upper 16 bits of data
are stored in the designated file register No.+ 1 (Rn + 1).
For example, if register R2 is designated in the DMOV instruction,
the lower 16 bits are stored in R2, and the upper 16 bits are stored
in R3.

‘—H EDMOV 0o R’ZJ—‘

Processing object: R2, R3

| mra | Rz |
Upper Lower
l 16 bits I 16 bits l

1

(2) File register capacity

Each file can be expanded to a maximum of 32 blocks (1018k words) in
1 block (32k words) units.

However, the permissible number of expansion blocks varies according
to the capacity of the memory card being used, and the size of the
sequence programs stored in the memory card.

1) For details regarding the QnACPU memory cards , See Section 2.3.

4. DEVICES

(3) Differences in memory card access method by memory card type

The following three types of memory card are used to store a file register.
Memory card access method differs depending on the memory type.

RAM
(a) Read/write using a program is allowed.
(b) PC read/write through the device setting is allowed.

(c) The file register data can be changed by any of the following
methods.

1) Online test operation by GPP

2) Batch write command by the dedicated protocol of QC24 and
QE71

3) Device write or random write command from a GOT900 series
E2PROM

(a) Read using a program is allowed but write using a program is not
allowed.

{b) PC read/write through the device setting is allowed.

(c) The file register data can be changed by any of the following meth-
ods.

1) Batch write command by the dedicated protocol of QC24 and
QE71
(CPU must be in the STOP/PAUSE state.)
This is possible from the following software version of the CPU.

CPU Type Software Version
QnA L or later
Q2AS(H) T or later
Q4AR S or later

Flash ROM

(a) Read using a program is allowed but write using a program is not
allowed.

{b) PC read/write through the device setting is not allowed.

(c) File read/write through a reader/writer is allowed.
(For details, refer to the Operation Manual of the GPP.)

4. DEVICES

L | I\II IEE I__SE; IEE ‘::'-‘:l r] ‘E\

(4) Designating file registers for use

The memory card can hold a total of 124 file registers.
The memory card file registers which are to be used in the sequence
program are determined by the PC file settings parameters.

[PC file settings screen]

Designate file registers : _(._)'Nn . S Doy re Tt
- Ko t lze - o se
to be used 2.< > Program Kame is Used 2.(»> Pro 2 “a.-[ﬂl iz Used
o u
3.¢) lUse t}: Following Files 3.¢) Use thu.l'ollnui.ng Files
Drive [1 Drive [1]
] File [b
Capacity [1K
2. Comment Pile Usad by Instruction 4. File for Local Device
1.(»> Mot Used 1.¢%> Not Used
2.¢ > Program Kamae iz Used 2.¢ > Uze the Follaowing Piles
rive [] dve [1
3.¢) Use_the Following Files File [1
Drive [1 .
File)|
Cancel<N>
Space:Select Escitlose

(a) When "Not Use" is selected

This item is selected in order to designate which file registers are to
be used in the sequence program.

The QDRSET instruction is used to designate which file registers are
to be used.

(b) When "Program Name is Used" is selected

This item is selected when the file registers having the same file
name as the sequence program are to be used.

If the program is changed, the file registers are automatically
changed to conform to the new program name.

There are also cases where it is convenient to use the file registers
as local devices which can only be used with the program currently
being executed.

r- Example:

When file registers (A-C) having the same name as the programs (A-C) are to
be used, operation is as shown below.

+ At program A execution...File register A is accessed

* At program B execution...File register B is accessed

* At program C execution...File register C is accessed

|]

l Program A execution | <—=————————— > RO l File register A l

Y
Synchronized
I Program B execution |<— ------------- > R0| File register B j

¥
I Program C execution |<—=-~————-—— r—> RO I File register C l

4. DEVICES

(c)

MELSEC-QnA

In the cases listed below, the file register of the file name that was
executed at the end of one scan is accessed.

However, if there is no file register for the program executed at the
end of the scan, file register access is not possible.

¢ Access from a peripheral device
¢ Access from another station in the network
e Access from a serial communication module

Use the Following Files

This item is selected when a given file register is to be shared by all
executed programs.

By designating the file register "Drive", "File", and "Capacity" setting,
files for the parameter designated file registers will be created when
a QnACPU RUN status is established.

Registering file register files in the QnACPU

(a) If an item other than "Used the Following Files" is selected in the PC

file setting screen, the file register files must be registered in the
QnACPU. (If file registers having the same file name as the pro-
grams are to be used, they should be registered in the drive desig-
nated by the PC file settings parameters.)

1) When file register files are not registered in the QnACPU;
No error occurs even if reading/writing to file registers is exe-
cuted. However, all read outs from file registers are stored as
"FFFFH".

2) Reading/writing to file registers outside the registered range:
No error occurs even if reading/writing occurs to these file reg-

isters. However, all read outs from these file registers are
stored as "FFFFH".

4. DEVICES

MELSEC-QnA

(b) To register file register files in the QnACPU, designate the file name
are file register size settings at the peripheral device's "PC write
screen”, then write this data to the QnACPU.

The file register size is designated from ZRO, in 1k-point (1024
points) units. *1 \

[PC write screen]

- File name setting area

{irite to PC1
Interface R8232C < QnACPl
Target PC Network : @ Station : FF PC Type : Q2R
Target Mem Internal RAM Title I

_ﬂ 1. Pile Name [SAMPLEL 1 Title [

2. Tgt 1.[%] Parameter

et bl

2.1%] Seq/SFC Prog 1.¢%) Yhole_Range [JK Step
2.¢) Step Range 8 1-L

3.1] Device Comment 3.¢ > Step Range PI 1-1I]

g.{ g lsJeu {nig Ua%ue 4.< > Block Range 8 1-1 1

- imulation Data i i i i

6.0 1 File Register 1.<») Whole Range File register size setting

2.< > Specify ZRL I-L] area
2. Device Mem 1.[] Internal 1.4¢»#) Yhole Range
. 2.¢ > Specify Detail Range

Cancel<ND>

Ctrl+L:List Ctrl+D:Dir Space:Select Esc:Close

(6) File register size check

(a) If file registers are used in the QnACPU, program so that writ-
ing/reading to the file registers occurs when the file register size is
equal to or greater than the range actually required.

» A file register size check should be executed at step 0 of pro-
- grams in which file registers are used.

* After switching to another file register file using the QDRSET in-
struction, execute a file size check.

» When using the RSET instruction to switch blocks, check that
the switching destination block has a size of 1k points or more
before executing the RSET instruction.

| (File register size) > [32k points x (switching block No.) + 1k points] |

(b) The available file register size can be checked in the file register
capacity storage register (SD 647). *2 _
The file register size is stored in SD647 in 1k-point units.

The "less than 1k-points" surplus portion of a file register size is
not stored.

In order to ensure an accurate "range of use" check, be sure to
designate the file register setting in 1k-point (1024 points) units.

4. DEVICES

MELSEC-QnA

(c) Checking the file register size

1) The file register size used for each sequence program can be
checked.

2) On the basis of the total file register size set in SD647 (in the
sequence program), it is possible to determine if the flle register
size exceeds the number of points used.

[Program example 1]

The file register "range of use" is checked at the beginning of each program.

Designates
4k-points
SM400
— < Soe47 K4 | MO > e Finalfile register
range check
MO
} YO >‘ s Alarm processing
Transfer
MO command
e n [Move kax20 RO |4« Writing to file
register

[Program example 2]

The file register “range of use" is checked after executing the QDRSET in-

struction.
— | : { aorser “1aBc0" | e File register is
changed to drive
SM400 1 ABCD
— < soe47 k4 | M0 > o Final file register
range check
MO
{ {Yo > o Alarm processing
Transfer
MO command
,Y[% [l EMOVP K14X20 RO]— o Writing to file
register
[Program example 3]
For block switching.
SM400
- < soo47 K33} Mo >+ o Final file register

range check
MO
| Yo > e Alarm processing

Block switching
MO command

|| [RSET K1 + Switching to
A1 H - H block 1

4. DEVICES

MELSEC-QnA

1) *1 : Even if the file register setting range is not designated from ZR0, the file crea-
tion range will still begin from ZRO0, and end at the final file No.
For example, if the file register writing range is designated as ZR1000 to
ZR2047, the file creation range will be ZR0 to ZR2047.
As the data from ZR0O to ZR999 data will be useless in this case, be sure to des-
ignate the range from ZRO.

2) *2 : When switching to another file register occurs, the size of the new file register

file is stored at SD647.

File register designation method

(a) Block switching format

The block switching format designates the number of file register
points in 32k point (R0-R32767) units.
If multiple blocks are used, the RSET instruction is used to switch to
another block No. for further file register settings.

Settings are designated in the RO to R32767 range in each block.

ot [

|

MOV D0

_{ { [RSEF

MOV DO

|

K1

RO

K2

RO

e

(b) Serial number access format

RO designation
at block 1

RO designation
at block 2

L——— RO

L —» RO

Memory card

RO

to Block 0

R32767

to Block 1
R32767
to Block 2
AVAVAVA VAV VAVAVAVAVAVAY

This format is used for designating file register settings beyond 32k
points without switching blocks Nos. Multiple blocks of file registers
can be used as a continuous file register.

—1 ‘———[MOV Do

— p———{Mov o

ZR327SB]— -

ZR65536]— —_—

ZRO
to Block 0

ZR32767

L » 7R32768
to Block 1

ZR65535

L > 7R65536
to Block 2

NNANANANANNANANANANANS

Memory card

4. DEVICES

MELSEC-QnA
4.8 Nesting (N)
(1) Definition
Nesting devices are used with master control instructions.
(2) Designation method with master control
The master control instructions are used to open and close the ladders’
common bus so that switching of ladders may be executed efficiently by
the sequence program.
It is designated with the MC and MCR master control instructions.

For details on how to use master control, refer to the QnACPU Program-
ming Manual (Common Instructions).

Designated in ascending

No. order
A

|1 [
H [mc | no | wis 4
NO T MIS
| O—
B Executed when condition
1 f "A" is satisfied
{ Lve | v [mis |
N1——M15
| O
c Executed when conditions
o e i b
- 1l r A* and *B" are satisfied
| mMc [m lW7F
R Designated in descend-
NO nesting | | N1 nesting | | N2 nesting| MM’ . ing No. order
c:%r:‘trgl (;c;rr:trgl control [Executed when conditions
9 g range "A’, "B", *C" are satisfied
MCR N MC2-7 are reset
-y 0000000

Executed when conditions
"A*, and "B" are satisfied
MC1-7 are reset

Executed when condition
"A* is satisfied MCO-7 are
reset

Executed regardless of
A,B,C condition statuses

—— "~ Y~ S~~~

4-50

4. DEVICES

4.9 Pointers

4.9.1

Local pointers

(1)

(2)

(3)

(1)

MELSEC-QnA

Definition

Pointers are devices used in branch instructions. A total of 4096 pointers
can be used (total for all programs).

Pointer applications -

(a) Pointers are used in jump instructions (CJ, SCJ, JMP) to designate
jump destinations and labels (jump destination beginning).

(b) Pointers are used in sub-routine CALL instructions (CALL, CALLP)
to designate the CALL destination and label (sub-routine beginning).

Pointer types

There are 2 pointer types: "local pointers” which are used independently
in QnACPU programs, and "common pointers" which are used to call
sub-routine grograms from all programs executed in the QnACPU.
(See Section 4.9.1 for details regarding "local pointers”, and section
4.9.2 for details regarding "common pointers".)

Definition

(a) Local pointers are pointers which can be used independently in
QnACPU program jump instructions and sub-routine call instruc-
tions. Local pointers cannot be used from other program Jump
instructions and sub-routine CALL instructions.

(b) the same pointer No. can be used in each of the programs.

e -

e H

EEND }

S

(T

[END :|—

Program B Program B
. / / §ame pointer
— F———— car PO H — ———{ e po is used
— [FEND]_ [FEND]_

4. DEVICES
, MELSEC-QnA

(2) Number of loca! pointer points

Local pointers up to the specified number of points can be divided among
all the programs.

The highest local pointer No. represents the upper limit of the "number
of points used" in each program.

Therefore, when local pointers are used at several programs, the pointer
settings should begin from PO.

If the total number of pointers (total for all programs) exceeds the
designated range, a pointer configuration error (error code:4020) oc-
curs. :

r- Example:

If the number of local pointer points is designated as "400", they cannot be used as follows.

Program A Program B Program C
P0-P39 used P100-P199 used Only P299 is
in program in program used in program

!

'

PO-P99 occupy P0-P199 occupy P0-P299 occupy Total of 600
100 points 200 points 300 DOi"r """ points used.
if PO-P99 are If PO is used,
used, the number the number of
of occupied occupied
points is 100. points is 1.

4.9.2 Common pointers
(1) Definition

(a) Common pointers are used to call sub-routine programs from all
programs being executed in the QnACPU.

Program A Program C
caL P20t | [T~ |, P20 CAL PO
- — H
FEND ————{RET]—
P——<
Program B /f s 7
—’_/
—[RET
}——[c,«u. P205 :]_
—[END }
FEND

(b) The same pointer No. cannot be used again as a label. Such use
will result in a pointer configuration error (error code:4021).

4. DEVICES

(2)

Common pointer range of use

MELSEC-QnA

In order to use common pointers, the first common pointer No. must be
designated in the PC system settings parameters.

All pointers which follow that "first No." will become common pointers.
However, only pointer numbers subsequent to the local pointer range
can be designated (by parameter setting) as common pointers.

Program A

Program B

Program C

P0O-P99 used in
program

P0-P99 used in
program

P0-P199 used in
program

P0-P99 occupy

P0O-P99 occupy

P0-P199 occupy
J

100 points 100 points 200 points
All pointers after
ggit:tlsofx:gg P400 can be used as

[PC system settings screen]

common pointers.

Set the head number
/ of the common

i. Slow [18@1ns
2. Fast [18Ins

2. RUN-PAUSE Contact RUN H{]
PAUSE XL]

3. Allow Remote Reset 1.(x> Yes
2.¢ > No

4. Output at STOP-IRU

L]
1.¢#> Prior to Cale
2.< > Rfter one Scan

Execute(Y)

5. Common Pointer % from [1
6. General Data Processi 1lUnit/try
?. # of Free Slots

B. System Interrupt

1st Interrupt Counter CL 1
128 Const Intervall 1881ns
129 Const Intervall 491ms
138 Const Intervall 2@I1ms
131 Conzt Intervall 18Ims

VLA WM
bt

Cancel<N>

$pace:felect Esc:Closel

pointers here.

<16 >

POINT[

(1) In the jump instruction, jumping to commeon pointers in other pro-
grams is not allowed. Common pointers should be used only with

sub-routine call instructions.

4. DEVICES

MELSEC-QnA

4.10 Interrupt pointers (1)
(1) Definition

(a) Interrupt pointers are used as labels at the beginning of interrupt
programs.

Interrupt pointer
(interrupt program label)

ra [
Iia {

Interrupt program

[rer

(b) A total of 48 interrupt points (10-147) can be used (total for all
programs)

(2) Interrupt pointer No. & interrupt factor
(a) As shown below, there are four types of interrupt factor.

e Al61 factor.... Interrupt input from the Al61 interruption module.

¢ Sequence start generator module factor
. ... Interruption input from special function modules
such as a computer link module, etc., which
can dictate an interrupt start to the QnACPU
(Al161 excluded).

» Internal time factor
.... Fixed cycle interruption by QnACPU'’s internal timer.

e Error interruption
. ... Interruption by an error that does not stop
sequence program operation.

4. DEVICES

(b) A list of interrupt pointer Nos. and interrupt factors is given in Table
4.5 below.

Table 4.5 List of Interrupt Pointer Nos. & Interrupt Factors

Priority Priority Priority
| No. Interrupt Factors Ranking i No. interrupt factors Ranking 1 No. Interrupt factors Ranking
10 1st point 29 116 1st point 17 132 Errors that stop 1

operation
n 2nd point 30 117 2nd point 18 133 Vacant —_—
i2 3rd point 31 118 3rd point 19 UNIT VERIEY ERR.
. ; 134 FUZE BREAK OFF SP. 2
13 4th point 32 19 Sequence 4th point 20 UNIT ERRO
14 5th point 33 120 start 5th point 21
generator
15 6th point 34 121 module 6th point 22
A factor*' - 135 OPERATION ERROR 3
16 Al61 7th point 35 122 7th point 23 SFCP OPE. ERROR
17 interrupt | gih point 36 123 8th point 24 Error
module P o factor*®**
18 tactor 9th point 37 24 9th point 25 ICM.QOPE.ERROR
136 FILE 4
19 10th point 38 125 10th point 26 OPE. ERROR
110 11th point 39 126 11th point 27 137 EXTEND INS. ERR. 5
111 12th point 40 127 12th point 28 138 PRG. TIME OVER 6
112 13th point 41 128 100 ms 48 CHK instruction
139 execution annunciator 7
n3 14th point 42 129 40 ms 47 detection
internal
timer 140 .
114 15th point 43 130 factor*? 20 ms 46 to Vacant —_—
146
. Used as label of
115 16th point 44 131 10 ms 45 147 EDRSET instruction. _

1) *1 ; 1st to 12th points are allocated in order, beginning from the sequence start gen-
erator module installed closest to the QnACPU.

2) *2 : The internal times shown are the default setting times.
These times can be designated in 5 ms units through a 5 ms-1000 ms range
(PC system settings parameters).

3) *3 : When an error interruption with “132 (error that stops operation)" occurs, the
QnACPU is not stopped until 132 processing is completed.

4) *4 : Execution of error interruptions is prohibited when the power is turned on and
during a QnACPU reset. When using interrupt pointer Nos. 132 to 139, set the
interruption permitted status by using the IMASK instruction.

4. DEVICES

411 Other Devices

4.11.1 SFC block device (BL)

This device is used for checking if the block designated by the SFC pro-
gram is active.

For details regarding the use of SFC block devices, refer to the QnACPU
Programming Manual (SFC).

4.11.2 SFC transition device (TR)
This device is used for checking if a forced transition is designated for a
specified transition condition in a specified SFC program block.

For details regarding the use of SFC transition devices, refer to the
QnACPU Programming Manual (SFC).

4.11.3 Network No. designation device (J)
(1) Definition

The network No. designation device is used to designate the network
No. in data link instructions.

(2) Designating network No. designation device

The network No. designation device is designated in the data link
instruction as shown below.

l——”——{:ﬁ.@;&Ta s2 s3 @}1

Network No. designation device
(n: network No.)

Instruction name

Network No. designation
instruction

1) For details regarding data link instructions, refer to the QnACPU Programming
Manual (Common instructions).

4. DEVICES
MELSEC-QnA

4.11.4 /O No. designation device (U)
(1) Definition

1/0 No. designation devices are used with data link instructions or

special function module instruction module instructions to designate 1/O
numbers.

(2) Designating the /O No. designation device

1/0 No. designation devices are designated with the data link instructions
or special function module instructions as shown below.

}_‘Hﬁi'%&,‘iﬁs’ 52 s3 @]-I

1/0 No. designation device
(n: YO No.)

Instruction name

1/0 No. designation instruction

1) For details regarding special function module instructions, refer to the QnACPU Pro-
gramming Manual (Special Function Module).

4. DEVICES

MELSEC-QnA

4.11.5 Macro instruction argument device (VD)

(1)

(2)

Sequence program

Definition

Macro instruction argument devices are used with ladders registered as
macros.

When a VDIl setting is designated for a ladder registered as a macro,
conversion to the designated device occurs when the macro instruction
is executed.

Designating macro instruction argument devices

Macro instruction argument devices are designated for those devices set
as "VDII" in ladders registered as macro instructions in macro registra-
tion at a peripheral device.*

When using macro instructions in a sequence program, designate de-
vices to correspond to the instruction argument devices used with the
ladders registered as macros, in ascending order.

Ladder registered as a macro
(registration name: MAX)

Name of ladder registered as a macro

[M.MAX 00 D1 RO —|:> Voo YADNLHMOV VDo y%z}-

|~ | Transfer to VD2 X
Transfer to VD1
Transfer to VDO

-|:<= VDO vawv VD1 VD2

Actual sequence program
executed at QnACPU

—1:> 00 D1]——[MOV 00 R0:|—-

—[<= D0 D1]——[MOV D1 R0:|——

1) *: With the macro instruction argument device, VDO to VD4 can be used in one lad-
der registered as a macro instruction.

4. DEVICES

MELSEC-QnA

412 Constants

4.12.1 Decimal constants (K)

(1) Definition
Decimal constants are devices which designate decimal data in se-
guence programs.
They are designated as "KI__settings (e.g. K1234), and are stored in
the QnACPU in binary (BIN) code.
See Section 3.4.1 for details regarding binary code.

(2) Designation range
The setting ranges for decimal constants are as follows:

e For word data (16 bits) ... K-32768 to K32767

e For 2-word data (32 bits) . K-2147483648 to K2147483647
4.12.2 Hexadecimal constants (H)

(1) Definition
Hexadecimal constants are devices which designate hexadecimal or
BCD data in sequence programs. (For BCD data designations, 0-9 digit
designations are used.) '
Hexadecimal constants are designated ad "HI 2" settings (e.g. H1234).
See Section 3.4.3 for details regarding hexadecimal code. -

(2) Designation range
The setting ranges for hexadecimal constants are as follows:

» For word data (16 bits) ... HO to HFFFF (HO to H9998 for BCD)

¢ For 2-word data (32 bits) . HO to HFFFFFFFF (HO to H99999999 for
BCD)

4. DEVICES

4.12.3 Real numbers (E)

(1)

(3)

4.12.4 Character string (")

1)

(2)

3)

MELSEC-QnA

Definition

Real numbers are devices which designate real numbers in the se-
quence program.

Real numbers are designated as "EZ_“"settings (e.g. E1.234).

See section 3.4.4 for details regarding real numbers.

Designation range

The setting range for real numbers is -1 .0x21%7 15 -1 .Ox2'126, 0,1 .0x27126
to 1.0x21%7,

Designation method

Real numbers can be designated in sequence programs by a "normal
expression” or an “exponential expression”.

o Normal expression....... The specified value is designated as
it is F or example, 10.2345 becomes
E10.2345.

¢ Exponential expression... The specified value is multiplied by a

“x10""exponent.
For example, 1234 becomes E1.234 + 3.*

1) *:The "+3" in the above example represents a 10"value (10%).

Definition

Character siring constants are devices used to designate character
strings in sequence programs.

They are designated by quotation marks (e.g. "ABCD1234").

Usable characters

All ASCIi code characters can be used in character strings.

Number of designated characters

Character strings extend from the designated character to the NUL code
(00H).

4. DEVICES

MELSEC-QnA

413 Convenient Uses for Devices

When executing multiple programs in the QnACPU, local devices among
the internal user devices can be designated to execute each of the pro-
grams in an independent manner.

Moreover, the device initial settings can be used to designate device and
special function module data settings without using a program.

4.13.1 Global devices & local devices

A number of programs can be stored and executed in the QnQCPU.
QnACPU devices which can be shared by all the programs are "global de-
vices", and those used independently by each of the programs are "loca! de-
vices".

(1) Global devices

(a) Global devices are devices which can be shared by all the programs
being executed in the QnACPU. Global devices are stored in the
QnACPU’s device memory, with all programs using the same de-
vices.

Global devices are shared by all programs being executed.

Program A Device memory

T data

Program B

. Internal relay
MO
l < Yi2 Mo ON/OFF
MO ON/OFF
[

}—< Y11 MO ON/OFF

T data

e

(b) When executing multiple programs, the "shared range" for all pro-
grams, and the "independent range" for each program must be
designated in advance.

Example: Internal relay

MO {Shared by all programs

Used in program A

Used in program B The "range of use” must be designated
for each program.

Used in program C

VAV B

4. DEVICES

(2) Local devices

(a) Local devices are devices which are used independently by the
programs.
The use of local devices permits programming of multiple “"inde-
pendent execution” programs without regard to other programs.
However, because local devices are stored in the memory card an
memory card is required in order to use them.
Local devices cannot be used without an memory card.

-
1 If local devices are designated as the devices which follow M7000, they can be
1 used independently in programs executed after M7000.

Program A Memory card

M7000 Forprogram A __

1

:
i i
i 1
1 1
t 1
| Sk
i < ¥12 >_ : Internal relay ! 1
3 M7000 - 1M7000 [ON/GFF__ | E
: T ON/OFF data r ! ! !
: G TTTTTIIT Dol
] 1
1 1
' Program B For program B \
: e B! :
' M7000 ‘ Internal relay ! '
N |—_< Y11 >‘ - 1M7000 ON/OFF] !
; M7000] 1 :
1 T ON/OFF data ' : t
, e IITTIITTT S :
' 1
1 H
Ut U g g U =

(b) Five device types can be used as local devices: internal relays (M),
edge relays (V), timers (T,ST), counters (C), and data registers (D).

(c) Local device designation

1) In order to use the above devices as local devices, a local de-
vice range of use setting must be designated in the device set-
tings parameters.

Note that the range designated for local devices applies in all
programs, and cannot be changed for individual programs.

For example, if the local device range is designated as MO-
M100, this range will be used for local devices in all programs.

o Program A Program B Program C

M -
This range
becomes the
local device
range for all

M100 b programs.

4. DEVICES

[Device range setting]

2) When local device settings are designated, the drive and file
name where the local device data is to be stored must be des-
ignated in the PC file settings in the parameter mode

[PC file setting screen]

evice

Input Rolay

Qusput Rolay
ay

a
Link Relay
Annunc iator

Edge R
sun Relay

Ncuult Timer

Counter

Data Rogister

Link Regi:tur

Link Sp Reg N
o

FRYATST
(ST

{PC File Setcing) Lahe L
STile Regizeed 3. Degice Inicisl Yalue
1.¢%3 Rot Use +<) Not Used
2:¢73 Fra ran | Nane 15 Used PRES h-agn- Wane 1s Used
3.¢) Use the Follouing Files 3.¢ > Use_ths Pollowing Files
Drive [1 Drive { 1
Lt 1 Pile I 1
Capacity [X
2. Conment Pile Used by Instruction 4. File for Local Bevice
1.¢%> Not Uzed Not. Uged
2.0 Progean Nans ia lUsed 2 ¢) Use the Ponowan Files
ve
3.¢ > Use_the Following Files Hal b]
Drive [3
File [1
Cancel<N>

Local device range setting area Local device file setting area

(d) When local devices are used, an exchange occurs between the local
device file data stored in the memory card, and the data in the
QnACPU’s device area. The scan time is therefore extended by this
data exchange time.

« Q2ACPU (81) } 560 + 1.3 x (number of local device words)*
« Q2ASCPU (S1) X number of program (us)
e Q3ACPU————— 320 + 1.0 x (number of local device words)
X number of program (us)
4ACPU .
> Q 220 + 0.8 x (number of local device words)
* Q4ARCPU X number of program (is)
« Q2ASHCPU(S1) program i
) Program A) , Program B Program C
Sequence program = } ! I r—{ { —
Reset Saved Reset Saved Reset
Local device Local device Local device
For For < For
X program A X : program A X , program A X
For For For)
program B program B program B
| For | | For ‘ | For |
program C program C program C

(e) Data in the local device are all cleared when the CPU is switched

from STOP to RUN.

1) *:

See section 4.1.2 (item 2) for details regarding the "number of words" for focal
devices.

4. DEVICES
‘ MELSEC-QnA

POINTS |

(1) Concerning the use of local devices in interrupt programs, refer to
item 3.1.3.

(2) Unless specifically designated as "local devices", all devices are
global devices. :

-(3) Concerning the use of local devices in sub-routine programs, refer
to item 3.1.2.

4.13.2 Device initial values
(1) Definition

(a) Using device initial setting values, the data used for a program can
be stored in device or special function module buffer memories
without using a data setting program (initial processing program).

[Data setting by initial program]

SM402
_l } [MOV H100 DO]— Power ON/
STOP—RUN .
—_— Device
memory
MOV H2020 D1
— H
]
1 1
1 i
| !
[Data setting using device initial values]
Device Power ON/STOP—>RUN Device
initial values memory

4. DEVICES
MELSEC-QnA

(b) In order to use the device initial values, the device initial data must
be created in advance at the peripheral device, and this data must
be stored as a device initial value file in the QnACPU’s memory card.
At power ON, or on switching from STOP to RUN, the QnACPU writes
the data from the device initial value file to the specified device or
special function module buffer memory.

© QnACPU
225 i
. . : Internal RAM !
Peripheral device 1 Memory card !
! 1
*Device Device initial ' Device initial) :
initial value |_ value writing value writing Desig- | 1
range” | Device nat_ed ,
setting : initial value device |
——————————— 1 file I
1 [l e -
i
*Device ' : .
initial value ' : Special
data® setting !] — | function
| X module
1 !

(c) Device initial values can be used at the following devices:

1) Timer present value (T)

2) Retentive timer present value (ST)

3) Counter present value (C)

4) Data register (D)

5) Special register (SD)

6) Link register (W)

7) Special link register (SW)

8) File register (R0-R32767)

9) Special function module device (U:\G:3)
10) Link direct device (J{3\WL, JIASWIT)

(2) Procedure for using device initial values

(a) Designate the device initial value range settings in the device mode,
in the device initial value setting screen.

(b) Designate the device initial value data settings in the device mode

screen.
- - agw - H
[Device initial value setting screen] [Device mode]
1rsFile 2/PC 3/Find 4-Disp S/Edit ?/Windou 8/0ption Rlt:Menn Fl2:iHely)
[Device CPU:=Q2A C:SAMPLEINSAMPLEL <Insd> Fii:Mode
[Device Initial Ualue Range
Display:16-Bit Type Deci Ch or Stri.nEg
% |%® of Dev | First Device Last Devico | Comment gﬂ'ica -‘.E * * . +4 ! * +? 8123456789ABCD!
1 [q] [¥ -3 b} D 8
2|r bl 1= 3 D]
3|C 81[P ard 1 D a
4L 8ljL 3->C 1 D a
S|t 8lil prd] 1 I a
(113 allt b b D e
?|C Bl1lL P d] 3 D 8
8il allt 121 1 D a8
318 ellt 1->1 1 D 8
iBjt el|L 31] D 8
peR 1 -H -3] D 2
12]r 3143 o4 1 D 8
D []
D -]
D a

Device initial value range setting area Device initial value data setting area

4. DEVICES

MELSEC-QnA

(c) In the PC file settings in the parameter mode, designate the name
of the file where the device initial value data is to be stored.

[PC file settings screen]

[PC File Settingl
t. File Register e Init Va.
€) Not Used

¢{=) Program Name iz Used
<

1., ot Used °
2.< > Prograr Name is Used

jve [el
3.< > Uss_the Following Files
Drive [1

ive
) Use the Following
Drive [1

3 File [\\ . . .
Capacity £ 1X Setting area for file which
2. Comment Fils Used by Instruction 4. Fils for Local Bevice . contains the device initial
22<> Progran Mane 1z Ured 205 ue the Fellouing Files value data
3.¢) llun:);’l’:l}nvins Files File 1

1
Cancel<H)>

(d) Write the device initial value data and parameter settings to the
QnACPU.

(3) Precautions for the use of device initial values

(a) In cases where both device initial value data and latch range data
are present, the device initial value data takes precedence. There-
fore, the latch range data is overwritten by device initial value data
at power ON.

(b) Device initial values cannot be used in the following areas.

1) In an area of a special function module’s buffer memory area
where channel switching is required.
Example: Channel 2 area of the AJ71E71 Ethernet interface
module’s buffer memory.

2) In special function module areas where the writing sequence is
fixed.
Example: Initial settings of A68AD analog/digital converter
module.

3) In areas where no settings are desired at STOP — RUN switch-
ing (data which is set at power ON, and which is changed by
the program).

1) For details regarding the setting procedures for the "device initial value range” and
*device initial value data” items, refer to the SWOIVD-GPPQ GPP Function Software
Package Operating Manual (Offline).

2) For details regarding the procedure for writing the device initial values to the QnACPU,
refer to the SWIIVD-GPP GPPQ Function Software Package Operating Manuali
{Online).

5. PARAMETER LIST

5. PARAMETER LIST
Following is a list of parameters used in QnACPU.
For details of each of these parameters, refer to appropriate sections or manuals.
Item Parameter Description
No.
PC Sets labels and comments of peripheral devices to the CPU.
name - Does not influence CPU module operation.
Labet 0000+ Sets the CPU module labels.
Comment 0001+ Sets the CPU module comments.
PC system — Sets parameters for the CPU module system.
Low-speed timer :
Timer limit - P - 1001+ Sets the time limits for low/high-speed timers.
High-speed timer
RUN-PAUSE contact 10024 Sets the contact points to control RUN/PAUSE of the CPU module.
Remote reset 10031 Sets enable/disable of remote reset operation.
STOP— RUN output mode 1004+ Sets the output mode for STOP — RUN.
Common pointer number 10051 Sets the head number of a common pointer.
General data processing 1006H Sets the number of modules to be processed in one general data processing.
Number of vacant slot points 1007+ Sets the number of points for a vacant slot.
Interrupt counter
System-interrupt | . 1008+ Sets the head number of the interrupt counter and fixed-cycle-interval interrupt pointer.
Fixed cycle intervai
PC file — Sets the various files used by the CPU module.
File register 1100K Sets a file-register file,, to be used. Sets a file-register file to be used.
|Instruction comment file 1101H Sets a file for instruction comments.
Device initial vale 11021 Sets a file for device initial values.
File for local device 11031 Sets the file for a local device.
Device — Sets the points and latch range for each device.
Device points 2000+ Sets the device points to be used.
Latch range (Valid latch clear key) 2001H Sets the latch range when the latch clear key is valid.
Latch range (Invalid latch clear key) 2002+ Sets the latch range when the latch clear key is invalid.
Local device - 2003+ Sets the device range to be used for a local device.

MELSEC-QnA

5. PARAMETER LIST

MELSEC-QnA

Description Reference section/manual
Default value Aliowable range
USER’S MANUAL *
None] Half width character, maximum of 10 characters
None Half width character, maximum of 64 characters
100 ms 10 ms to 1000 ms (10 mS/L-lnIt) Section 4.2.10
10 ms 1 ms to 100 ms (1 ms/unit)
None X0 to X1FFF
Disabled Enable/Disable USER'S MANUAL *
Prior to operation ’ . Prior to operation/after 1 scan
None PO to P4095 Section 4.9.2
1 urTlt) 1.to 6 units : USER'S MANUAL *
16 points 0 to 64 points (16 points/unit)
None CO0 to C65535
128 — 100 ms
129 — 40 ms . Section 4.10
130 = 20 ms 5 to 1000 ms (5 ms/unit)
131 = 10 ms '

Do not specify in parameter.
Use the same file name as-the program file. Section 4.7
Do not create.

Do nét specify in parameter.

Do not specify in parameter.
Use the same file name as the program file. USER'S MANUAL *
Use specification file.

Do not specify in parameter.

Do not specify in parameter.
Use the same file name as the program file. |- Use the same file name as the program fiie. . Section 4.13.2
Use specification file.

Do not specify in parameter.

Do not specify in parameter. Use specification file.

Section 4.13.1

X — 8 k points
Y — 8 k points
M — 8 k points
L — 8 k points
B — 8 k points
F — 2 k points Fixed number of points for X(8 k points), Y(8 k

SB — 2 k points points), S(8 k points), SB(2 k points) and SW(2 k points). Total points
V — 2 k points including above must not Section 4.1
S — 8 k points exceed 28.8 k words. Maximum of 32 k points per device can be set.
T — 2k points Maximum of 64 k points per bit device can be set.

ST — Ok points
C — 1 k points
D — 12 k points
W — 8 k points

SW — 2 k points

None One range per device

USER'S MANUAL *
None One range per device)

None One range per device Section 4.13.1

*: Indicates the CPU Module User's Manual being used.

5. PARAMETER LIST

item . Par:lr:eter Description
PLC RAS setting - Makes various settings for RAS functions.
WDT setting
WDT setting Initial execution monitor time 3000+ Sets the watchdog timer of the CPU module.
Low-speed execution monitor time
Error check 3001H Sets whether the specified error will be detected or not.
Error-time operation mode 30024 Sets the operation mode of the CPU module when error is
P detected. :
Constant scan 3003+ Sets the constant scan time.
F-number display
Al i .
di:::;;/(;:]awt:c;e Comment display 3004n [Sets the display mode when the annunciator turns on.
Occurrence time
Error history 3005+ Sets the storage destination of the CPU module error history.
Low-speed program execution time 3006H Sets the time for execution of the low-speed program.
1I/O allocation — Sets the loading status of each system unit.
Type
. Points)
Slot setting head XY 4000H Sets the type, points, head /O number, etc. of a moduie.
eal
Model
5 i Power supply module 4001 Sets the models of the power supply module and extension
ase setting - H cable.
Extension cable nneg nnt inflignna CPLI madiile aneratinn
MELSECNET/Ethemnet setting : -
Number of modules 5000H
Valid module for other station access 5001H
Parameters transferred between data links 5002H
Routing parameters 5003+
MELSECN ET () Network setting sNMow *' | Sets the link parameters of the MELSECNET 1i data link system,
’ ——{network parameters of the MELSECNET/10 network system and
MELSECNE_T/1O Network refresh parameters S5NM1H the parameters of Ethemet.
network setting Common parameters 5NM2H *'
Station-specific parameters 5NM3H *'
1/0 allocation 5NM4H *'
Eth Group No.
1 grnet network 9NOOH
setting IP address

5. PARAMETER LIST

Description Reference section/manual
Default value Allowable range
200ms 10 ms to 2000 ms (10 ms/unit)
None 10 ms to 2000 ms (10 ms/unit)
None 10 ms to 2000 ms (10 ms/unit)
Check Check error
Stop Stop/Continue 2
USER’'S MANUAL
None 5 ms to 2000 ms (5 ms/unit)
Display Display/Do not display
Do not display Display/Do not display
Do not display Display/Do not display -
Built-in RAM Built-in RAM/Specified history file
None 5 ms to 2000 ms (5 ms/unit) Section 3.2.3
None Vacant/Input/Output/Special
None 0 to 64 points (16 points/unit)
None 0 to 1FFF (10H/unit: hexadecimal) w2
USER’S MANUAL
None Half-width characters, maximum of 16 characters
None Half-width characters, maximum of 16 characters
QnA/Q4AR Compatible MELSECNET/10 Network System
Refer to the QnA/Q4AR Compatible MELSECNET/10 Reference Manual)
N Network System Reference Manual. MELSECNET, MELSECNET/B Data Link System
Reference Manual

*1: N and M indicate the following.
N: Indicates the module number.
M: Indicates the network type.

M Network type M Network type

O~ |MELSECNET/10 (default) 94 |MELSECNET Il (local station)

1h |MELSECNET/10 (control station) AH |MELSECNET/10 (standby station)

2+ |MELSECNET/10 (normal station) BH |MELSECNET/10 (multiple remote master)

34 |MELSECNET/10 (remote master station) CH |MELSECNET/10 (parallel remote master)

41 |MELSECNET (maste} station) DH MELSECNET/10 (multiple remote sub master,
5H |MELSECNET Il mixed (master station) there is no remote master in host CPU)

6H |MELSECNET Il (master station) EH MELSECNET/10 (multiple remote sub master,
7+ |MELSECNET (local station) there is remote master in host CPU)

8+ |MELSECNET i mixed (local station) FH |MELSECNET/10 (parallel remote sub master)

*2: Indicates the CPU Module User's Manual being used.

5-4

5. PARAMETER LIST

ltem Parameter Description
No.
MELSECNET/MINI setting — Sets the parameters for automatic refresh of MELSECNET/MINI system,
Number of master modules 6000+ Sets the number of MELSECNET/MINI system master modules to be used.
Master module head /O
number
Model & station name
Receive data batch refresh
Send data batch refresh
Number of communication
error retries
Z’IEL.ISECNET/MINI FROM/TO instruction 600NH* |Sets details of MELSECNET/MINI system automatic refresh operation.
stalls access priority
Receive data clear during
communication error
Error station detection bit
data
Error number
MINI link operation during
CPU stop
Circuit error check
Auxiliary setting Sets the parameters to be used for multiple programs.
Program setting 7000H Sets the programs to be executed from among multiple programs.
Boot setting Sets the boot operation file, efc.
SFC setting _
SFC program start mode 8002H
. Sets the parameters necessary for the SFC program.
Start condition 80034 P v prog
Block stop-time output mode - 8005H
. I Verifies the I/O allocation settings.
X/Y allocation verification N Does not influence the CPU module operation.

5. PARAMETER LIST

Descrintion _
Default value Allowable range Reference sgctlonlmanual
0 0 to 8 modules
None CPU module I/O points
MINIS3 MINIS3/MINI () stations
200H starting with X1000 X, M, (';;la’ti;’es;’ 106' fg’r ‘gt’ ;Vizs‘;aca"t
200H starting with Y1000 VM E;T’]a'ﬁll’es;’ 1% f%r ‘l’)\i’t’gvﬂs‘)’a"a“‘
5 times 0 to 32 times USER'S MANUAL *
CPU priority CPU priority/Link priority
Clear Clear/Retain
None M, L, B, T,ST, C,D,W,R, ZR, vacant
None D,W,T,S8T,C,R,ZR
Stop Continue/Stop

Retention data

Test message/OFF data/Retention data

None

Program name, Scarv/Low speed/Default/Standby

None

File name, type, transfer source drive,
transfer target drive

Section 3.2

QCPU (Q Mode)/QnACPU Programming Manual (SFC)

QCPU (Q Mode)/QnACPU Programming Manual (SFC)

SWOIVD/NX-GPPQ Operating Manuatl (Offline)

*1: N indicates the master module number. (N: 1 to 8)

*2: Indicates the CPU Module User's Manual being used.

6. PROCEDURE FOR WRITING PROGRAMS TO QnACPU

MELSEC-QnA
6. PROCEDURE FOR WRITING PROGRAMS TO QnACPU

The procedure for writing programs (created at a peripheral device) to the
QnACPU is described in this section.

6.1 Writing Procedure For 1 Program

The procedure for writing one program created at a peripheral device to the
QnACPU and executing it is described here.

6.1.1 Hems to consider when creating one program

In order to create a program, the program size, number of device points
used, and the program file name, etc., must be set in advance.

(1) Program size considerations

Check that CPU’s program capacity is adequate for storing the pro-
gram and parameter data. The program capacities of the CPUs are
shown below.

e Q2AS(H)CPU : 28 k steps

« Q2ACPU : 28 k steps
¢ Q2AS(H)CPU-S1 : 60 k steps
+ Q2ACPU-S1 : 60 k steps
¢ Q3ACPU : 92 Kk steps
e Q4ACPU : 124 k steps
e Q4ARCPU : 124 k steps

If the CPU capacity is only adequate for the program, the parameter
data should be stored in the memory card.

(2) Designating a program file name

The file name of the program to be stored in the QnACPU must be
designated.

This file name is used when writing the program from the peripheral
device to the QnACPU, and when executing the program in the
QnACPU.

See Chapter 2 for details regarding file names.

(3) Designating devices
The number of devices required for the program must be determined.
See Chapter 4 for details regarding devices which can be used in the
QnACPU. ’

(4) Device initial value setting
Designate whether or not the device initial value settings are to be

used in the QnACPU devices and special function unit data.
See Section 4.13.2 for details regarding device initial values.

6. PROCEDURE FOR WRITING PROGRAMS TO QnACPU

MELSEC-QnA
6.1.2 Procedure for writing programs to the QnACPU

The procedure for writing programs and parameters (created at the periph-
eral device) to the memory card installed in the QnACPU memory card inter-
face "A" is shown below.

In order to write programs and parameters to the QnACPU memory card,
the memory card must be installed, and the boot and drive (where parame-
ters are stored) settings must be designated by the QnACPU DIP switches
(8YS 1).

For details regarding QnACPU DIP switches, refer to the User's Manual of
the CPU module used.

When writing programs and parameters to the QnACPU internal RAM, the
steps indicated by asterisks (*) below are not required.

Procedural steps shown in L1 boxes are performed at the peripheral de-
vice, and those shown in boxes are performed in the QnACPU.

)

Start the GPP function software | Refer to the SWOIVD-
package. GPPQ Operating Manual
(Offline)

Mode selection screen is
displayed.

Change the
number of device
points?

.......... See Section 4.1.2

Change the number of device
points at the device setting item
in the parameter mode.

I Create the program which is to |
be executed in the QnACPU.

6. PROCEDURE FOR WRITING PROGRAMS TO QnACPU
' MELSEC-QnA

M

Use the device
initial values?

........... See Section 4.13.2

YES

Designate the device initial value
range in the device mode.

Designate the device initial val-
ues in the device mode.

In the PC file settings in the pa-
rameter mode, designate the
name of the file to be used for
the designated device
initial values.

1n the boot file setting item in the
parameter mode, designate the
file name of the program to be
read from the memory card.

In the program settings in the
parameter mode, designate
the name of the program to be
executed, and its execution
condition.

Connect the peripheral device to

the QnACPU.
...... Q2AS(H)CPU(-81)/ : ERROR LED
Set the QnACPU’s RUN/STOP Q2ACPU(-S1) switches ON
key to the STOP position, then Q3ACPU/Q4ACPU/ : PARAMETER
switch the power ON. Q4ARCPU ERROR is
displayed

In the peripheral device online
mode, select the internal
RAM, and use the PC memory
batch operation to format the
internal RAM.

&)

6. PROCEDURE FOR WRITING PROGRAMS TO QnACPU

(2)

In the periphseral device online
mode, select memory card "A*
(RAM), then uss the PC memory
batch operation to format
memory card "A".

In the periphseral device online
mode, select *Clear PLC memory*
and delete the device including
latch range.

In the peripheral device online
mode, write the created program
and parameter data to memory
card "A".

Use the QnACPU’s RUN/STOP
key to execute a reset.

QnACPU’'s "BOOT" LED switches
ON.

e)

6. PROCEDURE FOR WRITING PROGRAMS TO QnACPU

MELSEC-QnA

6.2 Procedure For Multiple Programs

The procedure for writing multiple programs (programs split up according to
function, process, designer) to the QnACPU is described below.

6.2.1 Items to consider when creating multiple programs

To create multiple programs, it is necessary to decide in advance the size
of each program, the device used, and the program file name, etc.

(1) Program size considerations

Check that the CPU’s program capacity is adequate for storing the
programs. The program capacities of the CPUs are shown below.

s Q2AS(H)CPU : 28 k steps
e Q2ACPU : 28 k steps
e Q2AS(H)CPU-S1 : 60 k steps
» Q2ACPU-S1 : 60 k steps
« Q3ACPU : 92 k steps
s Q4ACPU : 124 k steps
* Q4ARCPU : 124 k steps

Decide whether the parameters are to be stored in the internal RAM
or in the memory card.

If they are to be stored in the internal RAM, the area available for the
program will be the capacity shown above, minus the parameter data
size.

(2) Designating a program file name

Designat the file name of the program to be stored in the QnACPU.
This file name is used when writing the program from the peripheral
device to the QnACPU, and when executing the program at the
QnACPU. See Chapter 2 for details regarding file names.

(3) Designating the program execution conditions

In order to execute multiple programs in QnACPU, execution condi-
tions must be designated for each program.

Execution is impossible for programs without file name and execution
condition settings.

See Section 3.2 for details regarding execution conditions.

6. PROCEDURE FOR WRITING PROGRAMS TO QnACPU

MELSEC-QnA
(4) Designating devices

(a) Designate the number of device points used in each program, and
the number of device points which are shared by all programs.
See Chapter 4 for details regarding devices which can be used in
the QnACPU.

(b) Designate whether or not the internal relays, edge relays, timers,
counters, and data registers of each program are to be designated
as local pointers.

See Section 4.13.1 for details regarding local pointers.

(c) When creating sub-routine programs, designate whether or not com-
mon pointers are to be used.
See Section 4.9.2 for details regarding common pointers.

(6) Device initial value setting
Designate whether or not the device initial value settings are to be
used for the QnACPU devices and special function unit data.
See Section 4.13.2 for details regarding device initial values.

6. PROCEDURE FOR WRITING PROGRAMS TO QnACPU

MELSEC-QnA

6.2.2 Procedure for writing programs to the QnACPU

The procedure for writing programs and parameters (created at the periph-
eral device) to the memory card installed in the QnACPU memory card inter-
face "A" is shown below.

In order to write programs and parameters to the QnACPU memory card,
the memory card must be installed, and the boot and drive (where parame-
ters are stored) settings must be designated by the QnACPU DIP switches
(8YS 1). '

For details regarding QnACPU DIP switches, refer to the User’s Manual.

When writing programs and parameters to the QnACPU internal RAM, the
steps indicated by asterisks (*) below are not required.

Procedural steps shown in L] boxes are performed at the peripheral de-
vice, and those shown in boxes are performed at the QnACPU.

C =

Start the GPP function software Refer to the SWIIVD-GPPQ

package. Operating Manual (Offline)

Mode selection screen is dis-
played.

Change the
number of device
points?

.......... See Section 4.1.2

Change the number of device
points at the device setting item
in the parameter mode.

_—— — — e — . —

r
[Create the program which is to l
be executed at the QnACPU.

6. PROCEDURE FOR WRITING PROGRAMS TO QnACPU

MELSEC-QnA

(1

Use the device
initial values?

------- See Section 4.13.2

YES

Designate the device initial value
range in the device mode.

Designate the device initial
values in the device mode.

In the PC file settings in the
parameter mode, designate the
name of the file to be used for

the designated device initial

values.

NO Designate local

dovices? L~ T See Section 4.13.1

In the device setting item in the
parameter mode, designate the
local device range.

In the file setting item in the
parameter mode, designate the
name of the local device file.

.NO Use common

pointers? -~ "t See Section 4.9.2

In the PC system setting item in
the parameter mode, designate
the first pointer No.

()

6. PROCEDURE FOR WRITING PROGRAMS TO QnACPU
MELSEC-QnA

2

In the boot file setting item in the
parameter mode, designate the
file name of the program to be

read from the memory card.

In the program setting item in the
parameter mode, designate the
name of the program to be exe-

cuted, and its execution condition.

Connect the peripheral device to

the QnACPU.
Set the QnAGPU’s RUN/STOP key PO
to the STOP position, then switch |[" """ " "~ ggﬁggg?gw S/ ESQ%ZSLCEND
the power ON. Q3ACPU/Q4ACPU/ : PARAMETER
Q4ARCPU ERROR is
l displayed

In the peripheral device online
mode, select the internal RAM,
and use the PC memory batch op-
eration to format the internal RAM.

In the peripheral device online
mode, select memory card A"
(RAM), then use the PC memory
batch operation to format

memory card "A".

In the peripheral device online
modoe, select *Clear PLC memory*
and delete the device including
latch range.

|

In the peripheral device online
mode, write the created program
and parameter data to memory
card "A". *

l

Use the QnACPU’s RUN/STOP
key to execute a reset.

l

QnACPU’s "BOOT" LED switches
ON. :

C w)

INDEX

[A] (E]
Accuracy of the initial scan time 3-16 Executing interrupt programs 3-9
Accuracy of the scan time 3-18 Extension ' 2-1
Annunciators (F) 412 [F]
ASCII code 3-45 F (Annunciators) 4-12
[B] FD (Function register) 4-34
B (Link relays) ' 4-18 File date & time 2-2
BCD (Binary coded decimal) 3-42 File handling precautions 2-14
BIN (Binary code) 3-39 File header 2-11
BL (SFC block device) 4-56 File name 2-1
Block switching format (File register) 4-49 File operation 2-12
[C] File register designation method 4-49
C (Counters) 4-26 File registers (R) ‘ 4-43
Character string 4-60 File registers ,
Character string data 3.45 serial nun?ber access format (ZR) 4-49
Common pointer 4-52 File size 2-2
Constant scan 3-17 File types 2-9
Constants 4-59 Function output (FY) 4-34
Counter count processing 4-26 Function input (FX) 4-34
Counter maximum counting speed 4-27 Function register (FD) 4-34
Counters (C) 4-26 FX (Function input) 4-34
(D] FY (Function output) 4-34
D (Data registers) 4-30 (G
Data registers (D) 4-30 Global devices 4-61
Decimal constants ' 4-59 [H]
Designating file registers 4-45 H (Hexadecimal constants) 4-59
Device initial values 4-64 HEX (Hexadecimal) 3-41
Device list 4-1 Hexadecimal constants (H) 4-59
Direct access inputs (DX) 4-5 High-speed retentive timer (ST) 4-22
Direct access outputs (DY) 4-8 High-speed timers (T) 4-21
Direct mode 3-34 [l
Drive No. 2-3 I (Interrupt pointers) 4-54
Duty 4-28 [/0 No. designation device (Un) 4-57
DX (Direct access inputs) 4-5 Index register processing 4-41
DY (Direct access outputs) 4-8 Index registers (Z) 4-41
[E] Initial execution programs 3-15
E (Real numbers) 4-60 Initial execution time monitor 3-16
Edge relay (V) 4-16 Initial scan time 3-16
END processing ; 3-15 Input/output processing 3-32
3-17

3-23

i (L]

Inputs (X) 4-4 Low-speed execution time monitor 3-24

Internal RAM 2-4 Low-speed retentive timer (ST) 4-22
Internal relays (M) 4-10 Low-speed scan time 3-23
Internal system devices : 4-34 Low-speed timers (T) 4-21
Internal user devices- 4-4 M)
Interrupt counter (C) 4-28 M (Internal relays) 4-10
Interrupt counter count processing 4-28 Macro instruction argument device (VD) 4-58
Interrupt counter precautions 4-29 Main routine program 3.4
Interrupt factors 4-54 Memory capacity Internal RAM 2-5
Interrupt pointers (1) 4-54 Memory capacity Memory card 2-7
Interrupt program creation restrictions 3-11 Memory capacity after formatting
Interrupt programs 3-8 Internal memory 2-5
[J] Memory capacity after formatting
J (Network No. designation device) 4-56 memory card 27
JOOABI: (Link relay) 4-36 Memory map Internal RAM 2-4
JUI\SBL: (Link special relay) 4-36 Memory map Memory card 26
JIASWE (Link special register) 4-36 Memory card 26
JOAWLE (Link register) ‘ 4-36 [N
JII\XC: (Link input) 4-36 N (Nesting) 4-50
JU3\Y:S (Link output) 4-36 Nesting (N) 4-50
K] Network No. designation device (J) 4-56
K (Decimal constants) : 459 [O]
L Outputs (Y) 4-7
L (Latch relays) 411 [Pl
Latch relays (L) 4-11 P (Pointers) 4-51
Link direct devices 4-36 Parameter list 5-1
Link input (JI2\XI3) 4-36 Pointers (P) 4-51
Link output (JII\YLD) 4-36 Precautions regarding the use of
Link register (J:\W:3) 4-36 device initial values 4-64
Link registers (W) 4-31 Precautions when using timer 4-24
Link relay (J::\B:3) 4-36 Procedure for using device initial values 4-65
Link relays (B) 4-18 Procedure for writing programs to the
Link special register (J:\SW::) 4-36 QnACPU ' 2:5
Link speci'al relay (Ji:\SBL3) 4-36 Processing at annunciator OFF 4-15
Local devices 4-61 Processing at annunciator ON 4-13
Local pointers 4-51 .
. Program construction 1-2
Low-speed END processing 323 Program execution conditions 3-13
Low-speed execution program
execution time 3-21

3-22

[R]

(]

R (File registers)
Real numbers

Refresh mode
Related programming manuals
Retentive timers (OUT ST:2)

S (Step relays)

SB (Special link relays)

Scan execution programs

Scan time

SD (Special registers)

SD520, SD521

(Scan time: Present value)
SD522, SD523 (Initial scan time)

SD524, SD525
(Scan time: Maximum value)

SD526, SD527
{Scan time: Minimum value)

SD528, SD529
(Low-speed scan time: Present value)

SD530, SD531
(Low-speed scan time: Initial value)

SD532, SD533
(Low-speed scan time: Minimum value)

SD534, SD535
(Low-speed scan time: Maximum value)

Sequence program

Serial number access format
(File register)

Setting the interrupt counter
Setting units at the internal user device
SFC block device (BL)

SFC transition device (TR)
Single precision floating

decimal point data

Size (File)

SM (Special relays)

Special function module devices
(UING:2)

4-43
3-43
4-60
3-32

1-9
4-22

4-20
4-20
3-17
3-18
4-36

3-18
3-16

3-23

3-23

3-23

3-23
3-1

4-49
4-29

4-56
4-56

3-43
2-2
4-35

4-40

(7]

V]

vl

Special link registers (SW)
Special link relays (SB)

Special registers (SD)

Special relays (SM)

ST (Retentive timers: OUT ST3)
Standby programs

Step relays (S)

Storage destination of files
Sub-routine programs

SW (Special link registers)

T (Timers)

Timer accuracy

Timer progessing

Timers (T)

Title

TR (SFC transition device)

U (I/O No. designation device)
U\GE
{Special function module devices)

V (Edge relay)
VD (Macro instruction argument device)

W]

X]

(Yl

1Z]

W (Link registers)
Watchdog timer (WDT)
WDT (Watchdog timer)

X (Inputs)

Y (Outputs)

Z (Index registers)
ZR (File registers serial number
access format)

4-33
4-20
4-36
4-35
4-22
3-25
4-20

2-9

3-b
4-33

4-21
4-23
4-23
4-21

2-2
4-56

4-57

4-40

4-16
4-58

4-31

3-18
3-18

4-7

4-41

4-49

WARRANTY

Please confirm the following product warranty details before using this product.

1. Gratis Warranty Term and Gratis Warranty Range
If any faults or defects (hereinafter "Failure™) found to be the responsibility of Mitsubishi occurs during use of the product
within the gratis warranty term, the product shall be repaired at no cost via the sales representative or Mitsubishi Service
Company.
However, if repairs are required onsite at domestic or overseas location, expenses to send an engineer will be solely at
the customer's discretion. Mitsubishi shall not be held responsible for any re-commissioning, maintenance, or testing on-
site that involves replacement of the failed module.

[Gratis Warranty Term]
The gratis warranty term of the product shall be for one year after the date of purchase or delivery to a designated
place.
Note that after manufacture and shipment from Mitsubishi, the maximum distribution period shall be six (6) months, and
the longest gratis warranty term after manufacturing shall be eighteen (18) months. The gratis warranty term of repair
parts shall not exceed the gratis warranty term before repairs.

[Gratis Warranty Range]

(1) The range shall be limited to nhormal use within the usage state, usage methods and usage environment, etc,,
which follow the conditions and precautions, etc., given in the instruction manual, user's manual and caution labels
on the product.

(2) Even within the gratis warranty term, repairs shall be charged for in the following cases.

1. Failure occurring from inappropriate storage or handling, carelessness or negligence by the user. Failure caused
by the user's hardware or software design.

2. Failure caused by unapproved modifications, etc., to the product by the user.

3. When the Mitsubishi product is assembled into a user's device, Failure that could have heen avoided if functions
or structures, judged as necessary in the legal safety measures the user's device is subject to or as necessary
by industry standards, had been provided.

4. Failure that could have been avoided if consumable parts (battery, backlight, fuse, etc.) designated in the
instruction manual had been correctly serviced or replaced.

5. Failure caused by external irresistible forces such as fires or abnormal voltages, and Failure caused by force
majeure such as earthquakes, lightning, wind and water damage.

6. Failure caused by reasons unpredictable by scientific technology standards at time of shipment from Mitsubishi.

7. Any other failure found not to be the responsibility of Mitsubishi or that admitted not to be so by the user.

2. Onerous repair term after discontinuation of production
(1) Mitsubishi shall accept onerous product repairs for seven (7) years after production of the product is discontinued.
Discontinuation of production shall be notified with Mitsubishi Technical Bulletins, etc.
(2) Product supply (including repair parts) is not available after production is discontinued.

3. Overseas setrvice
Overseas, repairs shall be accepted by Mitsubishi's local overseas FA Center. Note that the repair conditions at each FA
Center may differ.

4. Exclusion of loss in opportunity and secondary loss from warranty liability
Regardless of the gratis warranty term, Mitsubishi shall not be liable for compensation of damages caused by any cause
found not to be the responsibility of Mitsubishi, loss in opportunity, lost prefits incurred to the user by Failures of Mitsubishi
products, special damages and secondary damages whether foreseeable or not , compensation for accidents, and
compensation for damages to products other than Mitsubishi products, replacement by the user, maintenance of on-site
equipment, start-up test run and other tasks.

9. Changes in product specifications
The specifications given in the catalogs, manuals or technical documents are subject to change without prior notice.

6. Product application

(1) In using the Mitsubishi MELSEC programmable logic controller, the usage conditions shall be that the application will
not lead to a major accident even if any problem or fault should occur in the programmable logic controller device, and
that backup and fail-safe functions are systematically provided outside of the device for any problem or fault.

(2) The Mitsubishi programmable logic controller has been designed and manufactured for applications in general
industries, etc. Thus, applications in which the public could be affected such as in nuclear power plants and other
power plants operated by respective power companies, and applications in which a special quality assurance system
is required, such as for Railway companies or Public service purposes shall be excluded from the programmable logic
controller applications.

In addition, applicaticns in which human life or property that could be greatly affected, such as in aircraft, medical
applications, incineration and fuel devices, manned transportation, equipment for recreation and amusement, and
safety devices, shall also be excluded from the programmable logic controller range of applications.

However, in certain cases, some applications may be possible, providing the user consults their local Mitsubishi
representative outlining the special requirements of the project, and providing that all parties concerned agree to the
special circumstances, solely at the users discretion.

QnACPU
Programming Manual (Fundamentals)

MODEL QNA-P(KISO)-E
MORE- 13JF46

IB(NA)-66614-H(0603)MEE

2% MITSUBISHI ELECTRIC CORPORATION

HEAD OFFICE : TOKYO BUILDING, 2-7-3 MARUNOUCH]I, CHIYODA-KU, TOKYO 100-8310, JAPAN
NAGOYA WORKS : 1-14 , YADA-MINAMI 5-CHOME , HIGASHI-KU, NAGOYA , JAPAN

When exported from Japan, this manual does not require application to the
Ministry of Economy, Trade and Industry for service transaction permission.

Specifications subject to change without notice.

	SAFETY CAUTIONS
	REVISIONS
	INTRODUCTION
	CONTENTS
	About Manuals
	1. GENERAL DESCRIPTION
	1.1 Programs
	1.2 Convenient Programming Devices and Instructions
	1.3 Related Programming Manuals

	2. QnACPU FILES
	2.1 QnACPU Internal RAM & Memory Cards
	2.2 Internal RAM
	2.2.1 Memory map
	2.2.2 Formatting precautions
	2.2.3 Memory capacity after formatting

	2.3 Memory Card
	2.3.1 Memory map
	2.3.2 Memory capacity after formatting
	2.3.3 Executing memory card programs (boot run)

	2.4 File Types & Storage Destinations of Files Managed by QnACPU
	2.5 Program File Configuration
	2.6 File Operation and File Handling Precautions
	2.6.1 File operation
	2.6.2 File handling precautions

	3. SEQUENCE PROGRAM CONFIGURATION & EXECUTION CONDITIONS
	3.1 Sequence Program
	3.1.1 Main routine program
	3.1.2 Sub-routine programs
	3.1.3 Interrupt programs

	3.2 Program Execution Conditions & Operation Processing
	3.2.1 Initial execution programs
	3.2.2 Scan execution programs
	3.2.3 Low-speed execution programs
	3.2.4 Standby programs

	3.3 Input/Output Processing & Response Lag
	3.3.1 Refresh mode
	3.3.2 Direct mode

	3.4 Numeric Values which Can Be used in Sequence Programs
	3.4.1 BIN (Binary Code)
	3.4.2 HEX (Hexadecimal)
	3.4.3 BCD (Binary Coded Decimal)
	3.4.4 Real numbers

	3.5 Character String Data

	4. DEVICES
	4.1 Device List
	4.1.1 Device list
	4.1.2 Setting units in the internal user device

	4.2 Internal User Devices
	4.2.1 Inputs(X)
	4.2.2 Outputs(Y)
	4.2.3 Internal relays(M)
	4.2.4 Latch relays(L)
	4.2.5 Annunciators(F)
	4.2.6 Edge relay (V)
	4.2.7 Link relays (B)
	4.2.8 Special link relays (SB)
	4.2.9 Step relays (S)
	4.2.10 Timers (T)
	4.2.11 Counters (C)
	4.2.12 Data registers (D)
	4.2.13 Link registers (W)
	4.2.14 Special link registers (SW)

	4.3 Internal System Devices
	4.3.1 Function devices (FX, FY, FD)
	4.3.2 Special relays (SM)
	4.3.3 Special registers (SD)

	4.4 Link Direct Devices (J[]\[])
	4.5 Special Function Module Devices (U[]\G[])
	4.6 Index Registers (Z)
	4.7 File Registers (R)
	4.8 Nesting (N)
	4.9 Pointers
	4.9.1 Local pointers
	4.9.2 Common pointers

	4.10 Interrupt pointers (I)
	4.11 Other Devices
	4.11.1 SFC block device (BL)
	4.11.2 SFC transition device (TR)
	4.11.3 Network No. designation device (J)
	4.11.4 I/O No. designation device (U)
	4.11.5 Macro instruction argument devices (VD)

	4.12 Constants
	4.12.1 Decimal constants (K)
	4.12.2 Hexadecimal constants (H)
	4.12.3 Real numbers (E)
	4.12.4 Character string (")

	4.13 Convenient Uses for Devices
	4.13.1 Global devices & local devices
	4.13.2 Device initial values

	5. PARAMETER LIST
	6. PROCEDURE FOR WRITING PROGRAMS TO QnACPU
	6.1 Wiring Procedure For 1 Program
	6.1.1 Items to consider when creating one program
	6.1.2 Procedure for writing programs to the QnACPU

	6.2 Procedure For Multiple Programs
	6.2.1 Items to consider when creating multiple programs
	6.2.2 Procedure for writing programs to the QnACPU

	INDEX
	WARRANTY

