MITSUBISHI

Mitsubishi Programmable Controller

MELSECIE)..... MELSEC],. ..

MELSEC-Q/L
Programming Manual

Structured Text

e SAFETY PRECAUTIONS o

(Always read these precautions before use)

Before using the MELSEC-Q series or MELSEC-L series PLC, thoroughly read the manuals attached to
the products and the relevant manuals introduced in the attached manuals. Also pay careful attention to
safety and handle the products properly.

Please save the manuals attached to the products carefully to make them accessible when required, and
always forward them to the end user.

o CONDITIONS OF USE FOR THE PRODUCT e

(1) Mitsubishi programmable controller ("the PRODUCT") shall be used in conditions;
i) where any problem, fault or failure occurring in the PRODUCT, if any, shall not lead to any major or
serious accident; and
ii) where the backup and fail-safe function are systematically or automatically provided outside of the
PRODUCT for the case of any problem, fault or failure occurring in the PRODUCT.

(2) The PRODUCT has been designed and manufactured for the purpose of being used in general
industries.

MITSUBISHI SHALL HAVE NO RESPONSIBILITY OR LIABILITY (INCLUDING, BUT NOT LIMITED

TO ANY AND ALL RESPONSIBILITY OR LIABILITY BASED ON CONTRACT, WARRANTY, TORT,

PRODUCT LIABILITY) FOR ANY INJURY OR DEATH TO PERSONS OR LOSS OR DAMAGE TO

PROPERTY CAUSED BY the PRODUCT THAT ARE OPERATED OR USED IN APPLICATION NOT

INTENDED OR EXCLUDED BY INSTRUCTIONS, PRECAUTIONS, OR WARNING CONTAINED IN

MITSUBISHI'S USER, INSTRUCTION AND/OR SAFETY MANUALS, TECHNICAL BULLETINS AND

GUIDELINES FOR the PRODUCT.

("Prohibited Application")

Prohibited Applications include, but not limited to, the use of the PRODUCT in;

* Nuclear Power Plants and any other power plants operated by Power companies, and/or any other
cases in which the public could be affected if any problem or fault occurs in the PRODUCT.

* Railway companies or Public service purposes, and/or any other cases in which establishment of a
special quality assurance system is required by the Purchaser or End User.

* Aircraft or Aerospace, Medical applications, Train equipment, transport equipment such as Elevator
and Escalator, Incineration and Fuel devices, Vehicles, Manned transportation, Equipment for
Recreation and Amusement, and Safety devices, handling of Nuclear or Hazardous Materials or
Chemicals, Mining and Drilling, and/or other applications where there is a significant risk of injury to
the public or property.

Notwithstanding the above, restrictions Mitsubishi may in its sole discretion, authorize use of the
PRODUCT in one or more of the Prohibited Applications, provided that the usage of the PRODUCT is
limited only for the specific applications agreed to by Mitsubishi and provided further that no special
quality assurance or fail-safe, redundant or other safety features which exceed the general
specifications of the PRODUCTSs are required. For details, please contact the Mitsubishi
representative in your region.

REVISIONS

* The manual number is given on the bottom left of the back cover.

Print Date

* Manual Number

Revision

Feb., 2003

SH (NA) 080366E-A

First printing

Jul., 2003

SH (NA) 080366E-B

Correction

Section 6.7.1, Section 6.7.2, Section 6.7.3, Section 6.9.1, Section 6.9.2,
Section 6.9.3, Section 6.9.4, Section 6.9.5, Section 6.9.6, Chapter 7

Jun., 2004

SH (NA) 080366E-C

| Additional models |
Q12PRHCPU, Q25PRHCPU

Abbreviations and Generic Terms in This Manual

Section 2.1.1, Section 2.1.3, Chapter 5, Chapter 6, Section 6.1.8,
Section 6.1.14, Section 6.8.3, Chapter 7, WARRANTY

Feb., 2006

SH (NA) 080366E-D

Correction
Section 6.1.14

May, 2008

SH (NA) 080366E-E

Correction

Abbreviations and Generic Terms in This Manual, Section 2.1.1

Oct., 2008

SH (NA) 080366E-F

| Additional models |
QO0UJCPU, QOOUCPU, Q01UCPU, Q10UDHCPU, Q10UDEHCPU,
Q20UDHCPU, Q20UDEHCPU

Correction

Abbreviations and Generic Terms in This Manual, Section 2.1.1,
Section 3.2.1, Section 4.2.2

Jan., 2009

SH (NA) 080366E-G

Correction

Section 2.1.3, Chapter 5

Jan., 2010

SH (NA) 080366E-H

| Additional models |
L02CPU, L26CPU-BT
CONDITIONS OF USE FOR THE PRODUCT, Appendix 2

Correction

SAFETY PRECAUTIONS, About Manuals,

Abbreviations and Generic Terms in This Manual, Section 1.2,
Section 2.1.1, Section 2.1.3, Section 3.1, Section 3.3, Section 3.3.1,
Section 3.3.3, Section 4.2.1, Section 4.2.2, Chapter 5,

Section 5.16.1 to 5.16.4, Section 5.20.1, Section 5.20.2, Chapter 6,
Chapter 7,Appendix 1

Japanese Manual Version SH-080363-I

This manual confers no industrial property rights or any rights of any other kind, nor does it confer any patent
licenses. Mitsubishi Electric Corporation cannot be held responsible for any problems involving industrial property
rights which may occur as a result of using the contents noted in this manual.

A-3

© 2003 MITSUBISHI ELECTRIC CORPORATION

INTRODUCTION

Thank you for choosing the Mitsubishi MELSOFT series Integrated FA software.
Read this manual and make sure you understand the functions and performance of MELSEC series
sequencer thoroughly in advance to ensure correct use.

CONTENTS

SAFETY PRECAUTIONS ...ttt sttt s et ste et ste e s e e s e e steesteesteesteesseesseesseesseesseesseesseesasansesnsennsennes A- 1
CONDITIONS OF USE FOR THE PRODUCT ..ottt sttt saee st st snee e sneeeneeeeeeneeens A- 2
REVISIONS ...ttt ettt et e st e bt e a bt e a bt enbeeabeenbeenbeemte e be e beenseenteemeeenteenteeneeenteenes A- 3
IO 1L 2 T PSSR A- 4
1010]V = I SRR URORRR A- 4
ADOUL IMTBINUAIS ...ttt s bttt b et e ehe e e sab e e sa bt e e bt e et e e et e e e rbeeeanbeennbeeaas A-12
HOW t0 USE ThiS MaNUAL....... ..ottt et et e e e e e smee e emteeeeeeeeeeeaneeeaneean A-13
Abbreviations and Generic Terms in ThisS Manualcccooiiiiiiiiiniieee s A-14
1. OVERVIEW 1- 1to1- 4
1.1 What IS the ST LanQUAGETottt ettt ettt et sbe e ae e nae e e 1- 1
1.2 Features of ST Program in MELSEC-QU/L SEFIESccceiuiiiieiieiieieeseeesee et 1- 3
1.3 ST Program Creating ProCeAUNEooiiiiiiie et 1- 4
2. SYSTEM CONFIGURATION 2- 1t02- 3
2.1 SYStEM CONfIGUIALION.eiiiieiiei ettt e st eaee e st e e s be e e sbe e e sabeesaseesnbeesnseeenseeeasseeansenans 2- 1
2 I B N o] o] o= o] [T @ U SR 2- 1
2.1.2 Programming t00] fOr ST PrOgramcccueeiiiieiiiie ettt et e e saa e snbe e s e e eeseeesraeeanee s 2- 1
2.1.3 ST program SPECIfICALIONScciciiiiiiii i e b e saee e sabe e sreeeteeenraeeanee s 2- 1

3. HANDLING OF CHARACTERS AND NUMERIC VALUES IN ST PROGRAMS 3- 1t0 3-16
K U= o Lo O g F= = Tox (= RS RR 3-1
K D= 1= Y = o | T OSSR USSR 3-3
3.2.1 DAL LYPES ..ottt b bbbt he et e b ettt re e 33
3.2.2 ADOUE ANY LD .ttt ettt sttt e s e e e s e s he e e a e e e s ee e ne e e neeenteeneeenteeneeenteeneeenteenreenes 3- 4
3.2.3 Array @nd STTUCIUIE ...ttt ettt ettt ee e 3-5
3.3 Data Representation MethOaS.... ...t e e e ee e e 3-8
B Tt 0o 11 = o (PRSP 3-8
G T - | o T[S 3-11

G TR TG B I 10 o7 S STS 3-14

4. ST PROGRAM EXPRESSIONS 4- 1t04-33
4.1 AsSIGNMENT STALEMENT.......oeie ettt b e saee e 4- 1
T @ o T=T -1 (o] = T PSRRI 4- 2
A IO o= Ty | (o 1) OSSOSO 4- 2
4.2.2 Examples of USiNg the OPEratorscoo i e e enee s 4- 4

A-4 A-4

T O70) a1 i IS}] £=) (- OSSR 4- 6

4.3.1 CONtrol SYNTAX IStveiiciii et e et e e et e e st e e s s e e eseeesaeesnteeebeeeraeeanne s 4- 6
4.3.2 Conditional StateMENTS...........oi et e e e aeeeanee s 4- 7
4.3.3 Repeat StatemMENt........oo oo e e e e et e e e arae e e e nnrees 4-15
4.3.4 Other CONMIOl SYNTAXESeiiieiieieieeiieecctieestee ettt stte st e st e et eestaeessteessseesteesseeeseeeaseeessseaesesensaeeaseeas 4-20
4.3.5 Precautions for use of CONrol SYNTAXES ..o e 4-22
4.4 Call Of FUNCHON BIOCKooitiiiiiieieie ettt s e ne e eae e sneesneesneesneesneas 4-29
ST 00T o 4]0 T o | TSRO 4-32
5. MELSEC FUNCTIONS 5- 1to 5- 114
How the fUNCIONS @re dESCIDEAooiiiii e ettt et 5- 1
o 0 I 11 1 o 1 SRR 5- 4
5.1.1 OULPUL 1O AEVICE ...eiieiieeei e OUT M....ccoriieee 5- 4
5.1.2 LOW-SPEEA HIMEN ...ttt e TIMER M....cccoeviees 5- 4
5.1.3 High-speed timer ... TIMER H M.............. 5-5
LTt I 3 701U | (=Y SRR COUNTER M.............. 5-5
5.1.5 SELOF ABVICE ...ooiiiiieei et e eaee e SET M., 5- 6
5.1.6 RESEt Of BVICEeoiiiiii e RST M., 5-6
5.1.7 Conversion of direct output into pulsecccoocoiiiiiiiiii e DELTA M., 5-7
ST 11] T 1 GRS SRR 5- 8
5.2.1 1-bit Shift Of dEVICEc.eeeieiieieeeee e SFT M., 5- 8
ST T I =T 0 0 =1 T o SRR 59
LT TRt B (o] o TSRS STOP_M ..o 5-9
T OTeTgaToT= Ty ETo] T o =T =1 1] o ISR 5-10
5.4.1 Block data CompariSON (Z) ...ceeoieeieieiee et BKCMP_EQ M............ 5-10
5.4.2 Block data CompariSoN (S>) ...cceiiiieiieieciee e BKCMP_NE M............ 5-10
5.4.3 Block data compariSON () ...ococeeiiiiiiiieee e BKCMP_GT M............ 5-11
5.4.4 Block data cCompariSON (S=) .ooeeiiiiiieieieeee e BKCMP_LE M............. 5-11
5.4.5 Block data COmMPariSON (<) ...cccceevcieiiieieeee et BKCMP_LT M............. 5-12
5.4.6 Block data compariSoN (>=) ...c.eeiiiiiiiieiee e BKCMP_GE M............ 5-12
5.5 Arithmetic OPErationottt et e e e e e e e e eneeesnee e sneeeenteeeneeeenees 5-13
5.5.1 Addition of BCD 4-digit data (2 deviCes)ccccvvvriinnnninniereeeee, BPLUS M.....ccoceeneee. 5-13
5.5.2 Addition of BCD 4-digit data (3 deviCes)ccccceververieiiniiecie e, BPLUS 3 M............... 5-13
5.5.3 Subtraction of BCD 4-digit data (2 deviCes)c.cccoovrvriiiininnieneen, BMINUS_Mcccceeuees 5-14
5.5.4 Subtraction of BCD 4-digit data (3 devices)ccccccvvvieiievieecieeceeee BMINUS 3 M............ 5-14
5.5.5 Addition of BCD 8-digit data (2 deviCes)cccriririininiiniireee, DBPLUS_M.........cu..e. 5-15
5.5.6 Addition of BCD 8-digit data (3 deviCes)cccccvvvreiririieiiecece e, DBPLUS_3 M.............. 5-15
5.5.7 Subtraction of BCD 8-digit data (2 devices)ccccccevvvevievcieeciee e DBMINUS M 5-16
5.5.8 Subtraction of BCD 8-digit data (3 deviCes)cccovririiiiiiiiien, DBMINUS_3 M 5-16
5.5.9 Multiplication of BCD 4-digit datac..cccoeiiiieeee e BMULTI. M. 5-17
5.5.10 Division of BCD 4-digit dataccccveviiriiiiiiie e BDIVID_M......ccccceennne. 5-17
5.5.11 Multiplication of BCD 8-digit dataccccccvvevviiiiiiiie e, DBMULTI_M 5-18
5.5.12 Division of BCD 8-digit dataccccceviiiiiiiiiii e DBDIVID_M.................. 5-18
5.5.13 Character string data connection (2 devices)ccccocevvivieeiieesieennen. STRING_PLUS M....... 5-19
5.5.14 Character string data connection (3 deviCes)cccovvevreeneeneeneennen. STRING_PLUS_3_M...5-19
5.5.15 BIN block additionccoouiiiiiiiiiiiie e BKPLUS M.................. 5-20
5.5.16 BIN block SUDIractionccoceviiiiiiiiiiiiee s BKMINUS_M................ 5-20

A-5 A-5

B5.5.17 INCIEMENT ...ttt et et e e e e snreeereeeneeeans INC M. 5-21

5.5, 18 DECIEMENT ..ottt st re e enes DEC M....ccooveiiveens 5-21
5.5.19 32-bit BIN inCrement ..o DINC M.......ccverennn. 5-22
5.5.20 32-bit BIN deCrementccooiiiiiiieieee e DDEC M....cccooeevvenne 5-22
SR D= 1= 7] 11V =T €1 To) o SRR 5-23
5.6.1 BIN — BCD CONVEISIONeoiiiieiieeeiee et BCD M. 5-23
5.6.2 32-bit BIN — BCD CONVEISIONococviiiiiieciie et DBCD M.....cccooeeeerens 5-23
5.6.3 BCD — BIN CONVEISIONoooiiiieiiieciee e BINM ..o 5-24
5.6.4 32-bit BCD — BIN CONVEISIONoiiiiiiiiiiiiie e DBIN M......coooieeeneen. 5-24
5.6.5 Floating-point — BIN CONVErSIONccceeiiiiiiiiiiie e INT_E_MD................... 5-25
5.6.6 32-bit floating-point — BIN conversionccccocovviiiieie e e DINT_E_MD................. 5-25
5.6.7 BIN — floating-point CONVErsioncccoiiiiiiiiiiiene e FLT Mo, 5-26
5.6.8 32-bit BIN — floating-point CONVErsionccccoceeveeeeieecie e DFLT M. 5-26
5.6.9 16-bit BIN — 32-bit BIN CONVEISIONcccceviiiiiiiiiiiiiie e DBL_ M ...covieieien 5-27
5.6.10 32-bit BIN — 16-bit BIN CONVErSiONcccccevviviiiiiiiie e WORD _M.....ccoecvrenree. 5-27
5.6.11 BIN — gray COde CONVEISIONccceiiiiieeiiiiieeeiieeeseiee e e steee e stee e e snnaeee s GRY Moo, 5-28
5.6.12 32-bit BIN — gray code CONVErSIONccccevvciiieeiiiieeeiieeeecieee e DGRY M....coocevveeirens 5-28
5.6.13 Gray code — BIN CONVEISIONccceoiiiiiiiiiiiiniereeee e GBIN_ M., 5-29
5.6.14 32-bit gray code — BIN CONVErSIONccccveviiiiieiiiiie e DGBIN _M........ccceevunenns 5-29
5.6.15 Complement of 2 of 16-bit BINccccooiieiiiiee e NEG M.....ooovveire 5-30
5.6.16 Complement of 2 of 32-bit BIN ..o DNEG M., 5-30
5.6.17 Complement of 2 of floating-pointccccceeveiiciiiie e ENEG M.....ccocoverenes 5-31
5.6.18 Block BIN — BCD CONVEISIONccceiiiiiieiiieeiieesieeecee ettt BKBCD M.......ccoeevureens 5-31
5.6.19 Block BCD — BIN CONVEISIONccocoiiiiiiiiiieieeeeeeee e BKBIN M ... 5-32
I AT 1= T I = 11 = SRR 5-33
5.7.1 16-bit data NOT transfercccccocieiiii i CML M....ccoovirieee 5-33
5.7.2 32-bit data NOT transfer ... DCML M ... 5-33
5.7.3 BIOCK tranSTerooiiiiiiii et BMOV_M.....cccoovveens 5-34
5.7.4 Same data block transfercccovviiiii i FMOV_M.....cocooiens 5-34
5.7.5 16-bit data eXChange ..o XCH M., 5-35
5.7.6 32-bit data eXChangecoooeuiiiiiiie e e DXCH M....coooiiienens 5-35
5.7.7 Block data exchangecccviiiiiiiicee e BXCH M.....ccoeevvene. 5-36
5.7.8 First/last byte eXxchange ... SWAP_MD......c.cccenuenne 5-36
5.8 Program EXECULION CONIIOL.........cciiiiieiiie ettt ettt st e st e et e e b e e e snte e sne e e snteeenreeenres 5-37
5.8.1 Interrupt disablecocveviiiiii e DELM.eee, 5-37
5.8.2 Interrupt €nable ... El Mo, 5-37
IR I 1L B L (Y] o RS 5-38
5.9.1 IO FEITESI .ot e e aaa e RFS M. 5-38
5.10 Logical Operation COMMEANGScoiiiiieiiieiieie ettt ettt ettt e et st esae e st eane e 5-39
5.10.1 Logical product (2 deVICES)cccceriiriiiiiie e WAND M....ccoveene 5-39
5.10.2 Logical product (3 deVICES)cccieviviiiiiie e WAND 3 M................. 5-39
5.10.3 32-bit data logical product (2 deViCeS)ccvuireiriiiiiiie e DAND_M....ccooiiiiinn 5-40
5.10.4 32-bit data logical product (3 deviCes)ccccccvevvciriiieecie e DAND 3 M......ccccuees 5-40
5.10.5 Block data logical productcccceecieiiiiiiii e BKAND M......cccceueen.. 5-41
5.10.6 Logical SUM (2 AEVICES)cceirueirieiiiiiie ittt WOR M. 5-41
5.10.7 Logical SUM (3 EVICES)eeeiiieiiiiiiei ettt WOR 3 M.....ccoeuneee 5-42
5.10.8 32-bit data logical sum (2 dEVICES)cceevvrereciiieeiieeee e DOR M ..o 5-42
5.10.9 32-bit data logical sSum (3 deViCeS)ccccvriiriiiriiiiiee e DOR 3 M...cooeiiienn 5-43

A-6 A-6

5.10.10 Block data logical SUMccoociiiiiiiiie e BKOR M....ccoceevirerns 5-43

5.10.11 EXclusive OR (2 deVICES)ccuvieiiiiiiiiiiiie et WXOR_M....ooveine 5-44
5.10.12 EXclusive OR (3 deVICES)cevieiiiiiiiiiiiic et WXOR_3 M.....cccoce... 5-44
5.10.13 32-bit data exclusive OR (2 deVICES)cceevcuerrcireiiee e DXOR M....ccoccviveiiens 5-45
5.10.14 32-bit data exclusive OR (3 deVICES)cceevcrerrcireiiee e DXOR 3 M.....cceevunenns 5-45
5.10.15 Block data exclusive OR ... BKXOR _M......cccoeeens 5-46
5.10.16 NOT exclusive OR (2 dEVICES)ccevvuvreeriiriieiieese e WXNR_M ..o, 5-46
5.10.17 NOT exclusive OR (3 dEVICES)ccevcurreriiiiiiiieiie e WXNR_3 M.....cccue. 5-47
5.10.18 32-bit data NOT exclusive OR (2 deViCeS)cceverrreriririiirierieeeeee DXNR_ M., 5-47
5.10.19 32-bit data NOT exclusive OR (3 deViCES)cccerverrerieeiieieeieeeeene DXNR_3 M.....cccceeuueee. 5-48
5.10.20 Block data NOT exclusive ORcccoooiiiiiiiniereeeeeeee e BKXNR_M......cceeens 5-48
ST (o = 4o SRS USR 5-49
5.11.1 Right rotation (carry flag not included)ccccocviiiiieii i ROR M ..o, 5-49
5.11.2 Right rotation (carry flag included)ccoeeeiiiiiiicee e RCR M...ccooieiiieiiens 5-49
5.11.3 Left rotation (carry flag not included)ccocvriiiiiiie, ROL_M...ccooiiiiiienn 5-50
5.11.4 Left rotation (carry flag included)ccccoooeriiiiicieee e RCL M. 5-50
5.11.5 32-bit data right rotation (carry flag not included)ccccccoeevierinennnn DROR M.....cccoevvveiens 5-51
5.11.6 32-bit data right rotation (carry flag included)ccccconenininiinnn, DRCR _M....ccooiiiiins 5-51
5.11.7 32-bit data left rotation (carry flag not included)ccceeciererrnenne DROL M....cooeviveiiens 5-52
5.11.8 32-bit data left rotation (carry flag included)cccccoeeveeeiiieicieceee DRCL Mccceviiees 5-52
CS T 22 T 1 SRR 5-53
5.12.1 n-bit right Shiftc.eii e SFR_ M. 5-53
5.12.2 n-bit [eft Shifteoeeiee e SFL_ M., 5-53
5.12.3 n-bit data 1-bit right shiftccoooieiie e BSFR M....cocovverenn 5-54
5.12.4 n-bit data 1-bit left Shiftcociriii e, BSFL M ..o 5-54
5.12.5 1-word right Shiftccoiiiii e DSFR_Mcceovire 5-55
5.12.6 1-word left Shiftcccccviiiii e DSFL M ..o 5-55
R B I = 1 0 To =] T SRS 5-56
5.13.1 Bit set of WOrd deViCeccocvieiiiiiiei e BSET M....cccovveereee. 5-56
5.13.2 Bit reset of Word deVicCec.ooiieiiiiiiii e BRST M....cooiiiiieen. 5-56
5.13.3 Bit test of WOrd deviCecccccuveiiiiiir e TEST_MDccoeevenee 5-57
5.13.4 Bittest of 32-bit datacccoveiiiiii DTEST_MD..........c....... 5-57
5.13.5 Bit device batch reset ..o BKRST M....ccoiiies 5-58
5.14 Data PrOCESSING .. ciiiitiiieietiiie e ittt e s st e e e sttte e e sttt e s s taeeesasteeeesasseeeeasaeeeaassaeesaasseeeeasseeessseeeaansseeesansanensnns 5-59
5.14.1 Data SEAICNccviiiiii ettt st snee e SER M...cooviieeeieeee, 5-59
5.14.2 32-bit data SEarch ..o DSER Mccoiiiieens 5-59
5.14.3 Bit CRECK ..o SUM_M .o, 5-60
5.14.4 32-bit data bit CheCKcoieiiiiiiie e DSUM_M...ccooiiiiaienns 5-60
LT I I 1o o =SS DECO _M.....cccovevven 5-61
B5.14.6 ENCOUE ..ottt et s ENCO _M.....ccocvirn 5-61
5.14.7 7-segMeNt dECOUEc.eiiiviieiiie ettt SEG M...ccoveieeceeee, 5-62
5.14.8 4-bit disconnection of 16-bit dataccooceeiiriiiiii DIS M ., 5-62
5.14.9 4-bit connection of 16-bit dataccccceviiiiiie e UNLM .., 5-63
5.14.10 Bit disconnection of any dataccccceevieeicii i NDIS M...coooieiieeiiens 5-63
5.14.11 Bit connection of any dataccccoeciiiiiiiii NUNI_M....cooiiii 5-64
5.14.12 Byte unit data disconnectioncccccevcei i, WTOB_MD................... 5-64
5.14.13 Byte unit data conNECHONccceevciiviiicee e BTOW_MD................... 5-65
5.14.14 Data maximum value retrieval ... MAX_ M. 5-65

A-7 A-7

5.14.15 32-bit data maximum value retrievalcccocveviiiieiiiii e, DMAX M.....ccoveveinnnnn. 5-66

5.14.16 Data minimum value retrievalcccccoooviiiecie e, MIN._M....coooriiieeie, 5-66
5.14.17 32-bit data minimum value retrievalcccoiiiiiiiii DMIN_M ..o 5-67
B5.14.18 Data SOMeeieiiiiieiie ettt SORT_M ..o 5-67
5.14.19 32-bit data SOItcoviiiice s DSORT_M......cccevenenne 5-68
5.14.20 Total value calculationcccooiiiiiiii e WSUM_ M. 5-68
5.14.21 32-bit total value calculationccccevviii i, DWSUM M.......ccceee 5-69
T SIS i (¥ Tox 184TSRSR 5-70
5.5 REfrESh .o COM M., 5-70
5.16 BUTfEr IMEIMOTY ACCESS ... utieiiiie et et ettt e et e ettt e st e st eete e e beeeeaeeeaaseesaseeeseeeaseeeesseesnseessseesnteeanseeanses 5-71
5.16.1 Intelligent function module 1-word datareadcccccccvevieeciiecnnenee FROM M.....ccccovrnenns 5-71
5.16.2 Intelligent function module 2-word data readcccceeerienienieniennne. DFRO_M....cccooviniennn 5-71
5.16.3 Intelligent function module 1-word data writeccceeevivieeiiiniienee, TO M. 5-72
5.16.4 Intelligent function module 2-word data writecccceeeveveeiceeicienee, DTO M..cooveoiiecieeiens 5-72
5.17 Character StriNG PrOCESSINGccieiiiiiiiiie ettt sb et b e bt e b e e sbe e sbe et st eabeeane e 5-73
5.17.1 BIN — decimal ASCIl CONVEISIONccccevieeiciiieiiiecee e BINDA S MD.............. 5-73
5.17.2 32-bit BIN — decimal ASCIl CONVErSioNnccceceveiieeiiee e DBINDA S MD........... 5-73
5.17.3 BIN — hexadecimal ASCII CONVersioncccoocereiiieieeieeeee e BINHA_S MD.............. 5-74
5.17.4 32-bit BIN — hexadecimal ASCII conversioncccccoceveviieeccieescreeenne, DBINHA S MD........... 5-74
5.17.5 BCD 4-digit — decimal ASCII CONVErSIONccccoevvveeeiieeiiee e BCDDA S MD............ 5-75
5.17.6 BCD 8-digit — decimal ASCII conversionccceooveiorenieesceeeceeene DBCDDA S MD.......... 5-75
5.17.7 Decimal ASCIl — BIN CONVEISIONccceeviieiiieiiiecree et DABIN_ S MD.............. 5-76
5.17.8 Decimal ASCIl — 32-bit BIN CONVErSIiONccccccvveieeeiieeiiee e DDABIN_S MD........... 5-76
5.17.9 Hexadecimal ASCIl — BIN conversionccccocoveiiieie e HABIN_S MD............. 5-77
5.17.10 Hexadecimal ASCIl — 32-bit BIN conversioncccccccoceevciericienenne DHABIN_S MD........... 5-77
5.17.11 Decimal ASCII — BCD 4-digit conversioncccccceevieevieesieecveeene DABCD_S MD............ 5-78
5.17.12 Decimal ASCIlI — BCD 8-digit conversionccccceveeerieeiceneieeene DDABCD_S_MD.......... 5-78
5.17.13 Device comment datareadcccceeceeeiie e COMRD_S MD 5-79
5.17.14 Character string length detectioncccccoveviiiiii i LEN S MD......cccuvn.. 5-79
5.17.15 BIN — character string conversionccccoeiiriiiienoe e STR_.S MD................. 5-80
5.17.16 32-bit BIN — character string conversionccccccoceevvvevieeccieeccieeeee DSTR S MD............... 5-80
5.17.17 Character string — BIN CONVEISIONcccecccieiiirecie e VAL S MD.................. 5-81
5.17.18 Character string — 32-bit BIN conversioncccccoeioeenieenieneienene DVAL_S MD................ 5-81
5.17.19 Floating-point — character string conversioncccccccocevevvieeeicnnnn. ESTR M. 5-82
5.17.20 Character string — floating-point conversionc..cccccevcvevceeiciennne EVAL Moo, 5-82
5.17.21 BIN — ASCII CONVEISIONeoiiiiiiiiieii et ASC_ S MD................. 5-83
5.17.22 ASCIl — BIN CONVEISIONooeiiiiiieiiciei ettt HEX S MD.................. 5-83
5.17.23 Fetch from character string right sidec.ccocoeiiiiiiiiice e, RIGHT M......cccoeene. 5-84
5.17.24 Fetch from character string left Side ..., LEFT_ M. 5-84
5.17.25 Any data fetch in character stringccccoovcivcicc MIDR M......ccoeree, 5-85
5.17.26 Any data replacement in character stringcccccoececevicive e, MIDW_M.....cccoovvenenen. 5-85
5.17.27 Character string SEArchccocvviiiiiiiiiie s INSTR_M ..o 5-86
5.17.28 Floating-point — BCD decompositioncccccceevceeeiieecie e EMOD M.....ccccovvevns 5-86
5.17.29 BCD format data — floating-pointccccceveviiricie e EREXP M......ccooeeeunens 5-87
5.18 Special FUNCHONS ...ttt e et e et e et e e e e e e e eeesaeeesneeeanseeenseeenees 5-88
5.18.1 Floating-point SIN operationcccccciieiiieiiie i SIN.E MD.....c.cn.... 5-88
5.18.2 Floating-point COS Operationcccceceevieeicieeiceeeee e COS_E MD................. 5-88
5.18.3 Floating-point TAN operationccoooiiiie i TAN_E_MD.................. 5-89

A-8 A-8

5.18.4 Floating-point SIN To] o= =1 i o] o KPR SURTRI ASIN_ E MD................ 5-89

5.18.5 Floating-point cos’ OPEratioNccceeeiieeiiee e ACOS E MD............... 5-90
5.18.6 Floating-point TAN o] 1T =1 (o] o R ATAN_E MD 5-90
5.18.7 Floating-point angle radianccccccvee e RAD_E_MD.................. 5-91
5.18.8 Floating-point radian — angle conversionc.ccccccevvceeeeiciieeecseeeenn. DEG E MD................. 5-91
5.18.9 Floating-point SqUAare rootcoooiriiiir e SQR E_MD................. 5-92
5.18.10 Floating-point natural exponential operationccccccveveeiiieeeieeennn. EXP_E MD.................. 5-92
5.18.11 Floating-point natural logarithm operationccccoeevevieeicieeccieeee LOG_E_MD.................. 5-93
5.18.12 Random number generationc.ccovieiniiniiniineeee e RND_ M. 5-93
5.18.13 SequENCE ChaNGEcoccviiiieecee e SRND M....coovveeree. 5-94
5.18.14 BCD 4-digit SQUAre rootccceiieiiiiieiie e BSQR_MDcccc....... 5-94
5.18.15 BCD 8-digit Square rootcccooireriieie e BDSQR_MD................. 5-95
5.18.16 BCD type SIN 0perationcccceceiiiiiieiiee e BSIN MD........cceeeunens 5-95
5.18.17 BCD type COS OpEerationccccceeiiiieiieecieescteseeee et BCOS MDcceeuveens 5-96
5.18.18 BCD type TAN 0Operationccoocieriiiiiieiee e BTAN_MD......c.ccceeneee. 5-96
5.18.19 BCD type SIN™ (o] 01T =1 i 0] o KRR BASIN_MD................... 5-97
5.18.20 BCD type cos’ o] o= = o] o K USSR BACOS MD................ 5-97
5.18.21 BCD type TAN OPEratioNoooeieie e BATAN_MD................. 5-98
I RSB T 1 ¢= I 7o 111 (o] RS RR 5-99
5.19.1 Upper/lower limit CONrolcccvieiiiiiiiie e LIMIT_MDcccc...e. 5-99
5.19.2 32-bit data upper/lower limit controlcccocoiiiiiiiii e DLIMIT_MD................ 5-100
5.19.3 Dead band CONtrOloooiiiiiicie e BAND_MD.................. 5-101
5.19.4 32-bit data dead band controlcccceevviii i DBAND_MD............... 5-102
5.19.5 Bit ZONE CONLIOI ...t ZONE_MD.................. 5-103
5.19.6 32-bit data bit Zone CoNtrolcceeveiiei i DZONE_MD............... 5-104
5.19.7 File register block NO. sSWItChingcccovoiiiiiii e, RSET MD................. 5-105
5.19.8 Set of file register file ... QDRSET _M............... 5-105
5.19.9 Set of cOMMENL Ileeveieieicie e QCDSET_M............... 5-106
ST N O o TSRS 5-107
5.20.1 Read of clock dataooeiiiieiee e DATERD_MD............. 5-107
5.20.2 Write of CloCK dataccooeiiiiiiicie e DATEWR_MD............ 5-108
5.20.3 Addition of Clock datacccoceviiiiiiiiiie e DATEPLUS M........... 5-109
5.20.4 Subtraction of clock datacccoiiiiiiii DATEMINUS M......... 5-110
5.20.5 Clock data format conversion (hour, minute, second — second) SECOND M............... 5-111
5.20.6 Clock data format conversion (second — hour, minute, second) HOUR M......cccveene. 5-111
IV I o (e e =10 0l ©Fe] o1 1o HE PP ORI 5-112
5.21.1 Program Standbycccccoieiiieiiie et PSTOP M.................. 5-112
5.21.2 Program output OFF standbycccooveiiiiiiciececee e POFF _M.....ccccoevvenen. 5-112
5.21.3 Program scan execution registrationccccevriininininicie e, PSCAN_M.....ccceeenen. 5-113
5.21.4 Program low-speed execution registrationccccccevvcevevicieececnenn. PLOW M.....cccccvenne. 5-113
ST O 1= £ USRS 5-114
5.22.1 WDT FESEL ..veieiiiie ettt sttt et ae s e sseenneenns WDT M. 5-114
6. IEC FUNCTIONS 6- 1t06- 77
How the functions are desCriDed ... 6- 1
6.1 Type Conversion FUNCHONS ..ot b e e bbb 6- 3

6.1.1 Boolean type (BOOL) double precision integer type (DINT) conversion.... BOOL_TO_DINT (_E) .6- 3

A-9 A-9

6.1.2 Boolean type (BOOL) integer type (INT) conversioncccceeeveevvenee. BOOL _TO_INT (_E)....6- 4
6.1.3 Boolean type (BOOL) character string type (STRING) conversion BOOL _TO_STR (_E)...6- 5
6.1.4 Double precision integer type (DINT) Boolean type (BOOL) conversion DINT_TO_BOOL (_E) .6- 6
6.1.5 Double precision integer type (DINT) integer type (INT) conversion DINT_TO_INT (_E)...... 6-7
6.1.6 Double precision integer type (DINT) real number type
(REAL) CONVETSION ...eoutiiiiiieeiie ettt ettt ettt ettt et DINT_TO_REAL (_E)..6- 8
6.1.7 Double precision integer type (DINT) character string type
(STRING) CONVETSIONocueiierieiierieteeeesistessse st ses e s e ss s sese s sessesenssnnes DINT_TO_STR(_E)....6- 9
6.1.8 Integer type (INT) Boolean type (BOOL) conversionccccceeveriennnnne INT_TO_BOOL (_E)....6-10
6.1.9 Integer type (INT) double precision integer type (DINT) conversion INT_TO _DINT (_E)...... 6-11
6.1.10 Integer type (INT) real number type (REAL) conversion INT_TO _REAL (_E).....6-12
6.1.11 Integer type (INT) character string type (STRING) conversion INT_TO_STR (_E)....... 6-13
6.1.12 Real number type (REAL) double precision integer type
(DINT) CONVEISIONevieiie ettt et etee e etee et et eeereeeenaeessseesseeenee s REAL_TO_DINT (_E)..6-14
6.1.13 Real number type (REAL) integer type (INT) conversionc.cc..... REAL_TO_INT (_E).....6-15
6.1.14 Real number type (REAL) character string type
(STRING) CONVEISIONoeeeiieeiieecieeecteeeetee et s et e e sree e sae e reeenee s REAL TO_STR (_E)...6-16
6.1.15 Character string type (STRING) Boolean type (BOOL) conversion STR_TO_BOOL (_E)...6-17
6.1.16 Character string type (STRING) double precision integer type
(DINT) CONVEISIONeveeeiieciie et e steeetee e etee et ste et eeereeeenaeesnseesneeenea s STR _TO_DINT (_E)....6-18
6.1.17 Character string type (STRING) integer type (INT) conversion STR_TO_INT (_E)....... 6-19
6.1.18 Character string type (STRING) real number type
(REAL) CONVETSIONooeiviieieieeiieestee e stee e ette st este e stee e sraeesnseesreaenseaennee s STR _TO_REAL (_E)...6-20
6.2 Numerical Functions (General FUNCHONS)coiiiiiiiiiiieee e e 6-21
6.2.1 ADSOIULE VAIUEceeiiiiiiie s ABS (E) oo 6-21
OIS Yo (U= T (Y (0T] PSS PRS SQRT (LE) oo, 6-22
6.3 Numeric Functions (Logarithm FUNCHONS)coiiiiiiiiei e e e 6-23
6.3.1 Natural 1ogarithmcccooiiiie e LN(E) i 6-24
6.3.2 Natural EXPONENTccccviiiiiicce e EXP (E) i 6-24
6.4 Numerical Functions (Trigonometric FUNCHONS)coiiiiiiiiiiieiieee e 6-25
6.4.1 Floating-point SIN 0perationcccccceeveiiieevcee e SIN(E)iiiiiieeeiee 6-25
6.4.2 Floating-point COS Operationcccccevieeiieeicee s COS(E)vriiiriiirannnn. 6-26
6.4.3 Floating-point TAN 0perationccccocviiiiiiiiiiii e TAN (LE) o, 6-27
6.4.4 Floating-point SIN™ (o] 01T =1 0] o KPR ASIN (E).ccovvieieiee 6-28
6.4.5 Floating-point cos”’ o] o= =1 i o] o KNS SRR ACOS (E)covveeveiee 6-29
6.4.6 Floating-point TANT OPErationc..vveveeeeeeeeeeeeeeeeeeeeeeeeeeee e ATAN (LE) .o 6-30
6.5 Arithmetic Operation FUNCLONSc..ooiiiiiic ettt e e s nte e reaenres 6-31
6.5.1 AItION ..ot ADD_Ecovivr 6-31
6.5.2 MUIIPHCAtION ... MUL_E ..., 6-32
6.5.3 SUDIraCHioNooiiieee s SUB E..cooovrre 6-33
6.5.4 DIVISION ...eiiiiitieiii ittt a e a e sneeens DIV E ..o 6-34
6.5.5 MOdUIUS OPEIatioNcceeiiiiiiiiiiie it MOD (_E) ..o 6-35
6.5.6 Natural exponentialccccoooieiiiiiiii e EXPT (E).cooieiiieiiens 6-36
B.5.7 ASSIGNIMENToiiiiiiiie et e s e ereeenes MOVE (E)..coeeevees 6-38
6.6 Bit Shift FUNCLONS ..ottt e e et e e e e st e e et e e e saeeeaneeesmeeeeneeenees 6-39
6.6.1 Bit 1eft Shiftooiie e 51 o | (R = 6-39
6.6.2 Bit right Shiftccooiiiie SHR (E) i, 6-40
6.6.3 Right rotationcccocviiii e ROR ((E).cccoieiierene 6-41

A-10 A-10

6.6.4 Left rotation.........c..ooiiiiiee e ROL((E).iiiieiiieiiens 6-42

6.7 Bit Type B0oolean FUNCHONS..........ooi ittt e s tee e e e e e eaee s e snseeeesnnsneaeanes 6-43
LS4 I oo [=1 I o] o o [T RS AND E ... 6-43
I W oo [To7= 1110 o o SR OR E..covveee 6-44
6.7.3 EXCIUSIVE 10QICal SUMooiiiiiiiie e XOR E v 6-45
L oo [oz N N TSP NOT (E).evcieveien 6-46

6.8 SeleCtioN FUNCHONScotiiiie ettt sttt s b et steete e beete e teenteenes 6-47
6.8.1 BiNAry SEIECHONcveiiieieie e SEL(E)eeereeeeieeee 6-47
6.8.2 MaxXimum VAIUEcc.ooiiiiiiiiieieeieeie ettt MAX (LE) e 6-49
6.8.3 MINIMUM VaAIUEoiiiiiiiiiiiiiie ettt MIN (_E) e 6-51
LR I 0 T (=Y SRR LIMIT (CE) coveeei 6-53
6.8.5 MUIIPIEXET ...t MUX (LE).eeieiiiiieienns 6-55

6.9 ComMPArSON FUNCHONSoiiiiicec et e et e et e e s e e s ate e et e e eneeessseesnteeenreeenres 6-57
6.9.1 Greater than right member (>)....cccocvieeiiiiee e GT E.ooreeeeeee, 6-57
6.9.2 Greater than or equal to right member (>=) ..., GE_E...co s 6-59
B.9.3 EQUAI (S) teeiiiiiii ittt EQ E. ..o 6-61
6.9.4 Less than or equal to right member (<=) ..o LE E.ooreeees 6-63
6.9.5 Less than right member (<) ..o LT _E.oie 6-65
ORI U T To (U= | I (S T NE_E ..o 6-67

6.10 Character StriNg FUNCHONSoiiii et e e et e e e e teesss e e sateeereeenres 6-69
6.10.1 Character string length acquisition ..., LEN (_E) .o 6-69
6.10.2 Acquisition from start position of character stringcccccevceevieennee. LEFT (E)vriiiieieeee. 6-70
6.10.3 Acquisition from end of character stringccccococeeviiivi v RIGHT (E) .ceeeoveeiiiens 6-71
6.10.4 Acquisition from specified position of character stringccc..cco..... MID (_E) v 6-72
6.10.5 Concatenation of character stringsccccoecveviieecie s CONCAT (_E)..ccuene. 6-73
6.10.6 Insertion of character string into specified positionccccccvvvieenne. INSERT (_E)..ccouveunenees 6-74
6.10.7 Deletion of character string from specified positioncc.ccoceneenen. DELETE (_E) ..ccccoveeenne 6-75
6.10.8 Replacement of character string from specified position REPLACE (_E) 6-76
6.10.9 Search for character string from specified positioncccceceveevernnee. FIND (E).ccoveeiieene 6-77

7. ERRORLIST 7- 1to7- 17
APPENDICES App- 1to App- 4
Appendix 1 Character Strings that cannot be Used as Labels and FB Names...........cccoooiiiiiiiiiiiee App- 1
Appendix 2 ST instruction table for GX Developer and GX WOrKS2cocoiiiieiiieiieeeee e App- 3
INDEX Index- 1to Index- 10

About Manuals

The manuals related to this product are shown below.
Refer to the following table when ordering required manuals.

[Relevant manuals |

Manual Name

Manual Number
(Model Code)

GX Developer Version 8 Operating Manual (Startup)

.) L) SH-080372E
Explains the system configuration, installation method and startup method of GX Developer. (13JU40)
(Sold separately)
GX Developer Version 8 Operating Manual
Explains the program creation method, printout method, monitoring method, debugging method, etc. SH-080373E
using GX Developer.. (13JU41)
(Sold separately)
GX Developer Version 8 Operating Manual (Function Block)
.) . . . SH-080376E
Explains the function block creation method, printout method, etc. using GX Developer. (13JU44)
(Sold separately)
GX Developer Version 8 Operating Manual (Structured Text)
.) .) SH-080367E
Explains the structured text (ST) program creation method, printout method, etc. using GX Developer. (13JU37)
(Sold separately)
Structured Text (ST) Programming Guide Book
Written for those who will create structured text (ST) programs for the first time. Explains the basic SH-080368E
(13JF69)

operation methods and functions through sample programs.
(Sold separately)

MELSEC-Q/L Programming Manual (Common Instructions)

Explains the methods of using the sequence instructions, basic instructions and application instructions.

(Sold separately)

SH-080809ENG
(13JW10)

REMARK

The Operating Manuals and Structured Text (ST) Programming Guide Book are
included on the CD-ROM of the software package in a PDF file format.

Manuals in printed form are sold separately for single purchase. Order a manual by
quoting the manual number (model code) listed in the table above.

How to Use This Manual

This Manual ...

Use this manual to perform structured text (hereafter abbreviated to ST)
programming with GX Developer. It is suitable for the users who have the knowledge
and programming experience of PLC ladder programs and for the users who have
the knowledge and programming experience of high-level languages such as the C
language.

"CHAPTER 1 OVERVIEW" describes the overview of the ST language, the features
of ST programming, and the ST program creation procedure.

"CHAPTER 2 SYSTEM CONFIGURATION" describes the applicable CPUs, ST
program specifications, etc.

"CHAPTER 3 HANDLING OF CHARACTERS AND NUMERIC VALUES IN ST
PROGRAMS" describes the types and representation methods of data used in ST
programs.

"CHAPTER 4 ST PROGRAM EXPRESSIONS" describes the expressions of the
operators, control syntaxes, etc. used in ST programs.

"CHAPTER 5 MELSEC FUNCTIONS" and "CHAPTER 6 IEC FUNCTIONS" describe
the arguments, return values and description examples of the functions used in ST
programs.

Operating Manual ...

The "GX Developer Operating Manual (ST)" consists of in-depth explanations of all
menus and menu options used to perform ST programming. Refer to the manual
when information on operation details is necessary.

When information on other than ST programming is necessary, refer to the "GX
Developer Operating Manual" or "GX Developer Operating Manual (Startup)".

When using the structured text language for the first time ...

Refer to the "First ST", which describes the outline of the ST language, the
procedures for creating an ST program using GX Developer and writing it to the PLC
CPU, the information necessary for that purpose, and others.

When you already have the knowledge of the ST lanquage and want to start
programming immediately ...

Proceed to "CHAPTER 5 MELSEC FUNCTIONS". It describes the necessary items
for use of the functions in ST programs. When it is desired to know the data to be
used in ST programs, refer to "CHAPTER 3 HANDLING OF CHARACTERS AND
NUMERIC VALUES IN ST PROGRAMS". It describes the types and representation
methods of the data used in ST programs. When it is desired to use control syntaxes
in ST programs, refer to "CHAPTER 4 ST PROGRAM EXPRESSIONS". It describes
the formats and description examples of the control syntaxes used in ST programs.

The following explains the symbols and information used in this manual.

Symbol Description Example

Point Gives the section-related knowledge and necessary int
information. n

Remark |Gives the section-related knowledge and useful
REMARK

information.

[] [Menu name of menu bar [Project]

Abbreviations and Generic Terms in This Manual

In this manual, the following generic terms and abbreviations are used to represent
the GX Developer software package and PLC CPU modules. The module mode
name is given when the applicable model name must be pointed out explicitly.

Generic Terms /Abbreviation

Description/Applicable Module

Generic product name of the product types SWnD5C-GPPW-E,

GX Developer SWnD5C-GPPW-EA, SWnD5C-GPPW-EV and SWnD5C-GPPW-EVA.
(n denotes the version 8 or later.)
Generic product name of the product types SWnDNC-GXW2-E

GX Works2)
(n denotes the version).

ST Abbreviation for structured text.

FB Abbreviation for function block.

Basic model QCPU

Generic term for Q00JCPU, QO00CPU and Q01CPU of function version B or later.

High Performance model QCPU

Generic term for Q02(H)CPU, Q06CPU, Q12HCPU and Q25HCPU.

Universal model QCPU

Generic term for QOOUJCPU, QO0UCPU, Q01UCPU, Q02UCPU, QO3UDCPU,
QO3UDECPU, Q04UDHCPU, Q04UDEHCPU, Q0O6UDHCPU, QO6UDEHCPU,
Q10UDHCPU, Q10UDEHCPU, Q13UDHCPU, Q13UDEHCPU, Q20UDHCPU,
Q20UDEHCPU, Q26UDHCPU and Q26UDEHCPU.

Process CPU

Generic term for Q02PHCPU, Q06PHCPU, Q12PHCPU and Q25PHCPU.

Redundant CPU

Generic term for Q12PRHCPU and Q25PRHCPU.

QCPU (Q mode)

Generic term for Q00J, Q00UJ, Q00, QO0U, Q01, Q01U, QO02(H), Q02PH, Q02U,
QO3UD, QO3UDE, Q04UDH, Q04UDEH, Q06H, Q06PH, Q06UDH, Q06UDEH,
Q10UDH, Q10UDEH, Q12H, Q12PH, Q12PRH, Q13UDH, Q13UDEH, Q20UDH,
Q20UDEH, Q25H, Q25PH, Q25PRH, Q26UDH and Q26UDEHCPU.

LCPU

Generic term for LO2CPU and L26CPU-BT.

MEMO

1 OVERVIEW

1 OVERVIEW

1.1 What Is the ST Language?

The ST language is defined in the International Standard IEC61131-3 that stipulates
the logic description system in open controllers.

The ST language supports operators, control syntaxes and functions to permit the
following descriptions.

- Control syntaxes such as conditional statement-dependent selective branch and
repeated statement-based repetition

- Expressions using operators (*, /, +, -, <, >, =, etc.)

- Call of user-defined function blocks (FB)

- Call of functions (MELSEC functions, IEC functions)

- Description of comments

The main features of the ST language are as described below.

(1) Free description in text format
The ST language is described in text format of alphanumeric characters, comments
and labels.

i ST MAIN 9Row 105Step - O] x|

[* & walwve is closed when the limit switch of a tank turns on.d walwe is opened when turned off, *) &

IF Limit_switch = TRUE THEN

Walwe 1= FALAE; (* & walwve iz cloged when a linit switch turns on *)

ELSE
Valwe 1= TRUE: [* & walwve iz opened when a linit switch turns off *)

END IF: _I
- b

(2) Programming on the same level as those of the C and other high-level languages
Like the high-level languages such as C, the ST language can describe control with
control syntaxes such as conditional statement-dependent selective branches and
repeated statement-based repetitions. Hence, easy-to-read programs can be
written briefly.

W ST MAIN 17Row 148Step - o] x|
|* Lines &4, B, and C are controlled. *) -
CA45E Line OF —

1: Htart switch i= TRUE; [* Conweyer operation start #)
Z: Gtart switch = FALSE: ¥ Conweyer stop)
3: dtart_switch = TRUE: [* Warning of a conweyer stop *)
Warning lamp := TROE:
END_CA3E;
IF fStarct switch = TRUE THEN I* It processes 100 times *)
FOR Mum of process := 0
TO 100
EY 1 DO
Parts_& 1= Parts_& + 1; —
END_FOE.;
END_TF:[|

1 OVERVIEW

(3) Ease of describing operation processing

Capable of briefly describing easy-to-read operation processing that is difficult to
describe in lists or ladders, the ST language has a high level of program readability

and is suitable for the fields where complex arithmetic operations, comparison
operations, etc. are performed.

= ST MAIN 11Row 1578tep

_||:|| XI
CASE Line OF s
1: Speed & := Distance B / Hour_C * 3600; —

[* FBE call *)

FE1(I_Test:=D0, 0_Test:=D1, I0_Test:=D100);
2: MO := GT_E(¥0, DO, D1, DZ, D3, Result):
I% Then the execution conditions X0 turn on, L
i* it judges whether the order of the walue of DO to D3 is right +)
Valwe := FALSE;
RETUEN; —
END_CASE:

1 OVERVIEW

1.2 Features of ST Program in MELSEC-Q/L Series

ST programs are described in ST language.

Using GX Developer to perform ST programming enables efficient programming to be
performed in excellent operation environment. The following provides the main
features of ST programs in the MELSEC-QJ/L series.

(1) Design efficiency improved by defining processing as parts
With often used processing defined as parts in the form of function blocks (FB) in
ST language, they can be used in necessary areas of each program. This not
only enhances the efficiency of program development but also reduces program
mistakes, improving program quality.
For more information, refer to the "GX Developer Operating Manual (Function
Block)" given in Relevant Manuals.

(2) Restoration of ST program read from PLC
In the MELSEC-QIL series, the created ST program is written to the PLC and
executed, and can be read from the PLC and then restored to enable editing in
the ST language format.

(3) Program change during system operation (online change)
Part of a running program can be changed without the PLC CPU being stopped.

(4) Connection with other language programs
Since the MELSEC-QJ/L series also supports languages other than the ST, the
language adequate for processing can be used to create efficient programs.
Execution conditions can be set on a file basis in each program, and multiple
program files can be written to a single PLC CPU.
Multiple languages support widespread application under optimum control.

(5) A wealth of functions group
The MELSEC functions compatible with various common instructions for the
MELSEC-QI/L series and the IEC functions defined in IEC61131-3 are available
for ST programs in the MELSEC-QJ/L series.

1 OVERVIEW

1.3 ST Program Creating Procedure

The following flowchart indicates the general procedure of ST programming.

In the following example, parts were created with the function block function and a

main program was then created in ST language.

. : For details, refer to the GX Developer Operating Manual
Creat f t) rreeeenas
(reation of new projec) (Structured Text).

Y

FB variable definiton @ f-++----- Define the variables used in an FB program.
For details, refer to the GX Developer Operating Manual
(Function Block).

FB definiton ~ fr-cre Create an FB program.
For details, refer to the GX Developer Operating Manual
(Function Block).

Y

Program label definiton ~ f-------- Define the global variables and local labels in a program.
For details, refer to the GX Developer Operating Manual.

ST programming [t Call FB and create an ST program.

— Described in this manual.

A 4

Convert (compile) ~ f-+-="-" Convert (compile) the ST program into a program that can be
executed by the PLC CPU.

For details, refer to the GX Developer Operating Manual
(Structured Text).

Y

WritetoPLC - Perform write to the PLC CPU.
For details, refer to the GX Developer Operating Manual
(Structured Text).

Y

Online debugging | *="r=""- Confirm the program behavior by conducting a device test.
For details, refer to the GX Developer Operating Manual
=

(Structured Text).

2 SYSTEM CONFIGURATION

2 SYSTEM CONFIGURATION

2.1 System Configuration

This section explains the system configuration for use of ST programs.

A 2.1.1 Applicable CPUs

ST programs are applicable to the following CPU modules.

Basic Model
QCPU

Universal model
QCPU

High Performance
Model QCPU

Process CPU

Redundant CPU

LCPU

QO00JCPU
QO0CPU
Q01CPU

Q02CPU
QO02HCPU
QO6HCPU
Q12HCPU
Q25HCPU

QoouJCPU
QO0UCPU
QO01UCPU
QO2UCPU

QO3UDCPU

QO3UDECPU
QO04UDHCPU
QO04UDEHCPU
QO6UDHCPU
QO6UDEHCPU
Q10UDHCPU
Q10UDEHCPU
Q13UDHCPU
Q13UDEHCPU
Q20UDHCPU
Q20UDEHCPU
Q26UDHCPU
Q26UDEHCPU

QO02PHCPU
QO6PHCPU
Q12PHCPU
Q25PHCPU

Q12PRHCPU
Q25PRHCPU

LO2CPU
L26CPU-BT

2.1.2 Programming tool for ST program

Use the following programming tool to create, edit and/or monitor ST programs.

Software Package Name

Operating Environment

GX Developer Version 8.00A or later

Refer to the "GX Developer Version 8 Operating Manual

(Startup)".

2.1.3 ST program specifications

This section explains the ST specifications and applicable devices.

(1)

Program size

The file size per program is 839680.

P

* A space is handled as one character.
* A TAB code is handled as one character.

@ Note the following when counting the number of characters in a file.
* Carriage return (CR) and Line feed (LF) are handled as two characters.

2-1

2 SYSTEM CONFIGURATION

(2) Applicable devices
The device names that can be used in ST programs are as indicated below. The

number of device points can be changed in parameter setting.

Refer to Section "3.3.3 Devices" for details of the device representation methods.

Classification Type Device Representation
Internal user device Bit Input X
Output Y
Internal relay M
Latch relay L
Annunciator F
Link relay B
Link special relay SB
Word Data register D
Link register W
Link special register SW
Internal system device Bit Special relay SM
Word Special register SD
Link direct device Bit Link input Jn\X
Link output Jn\Y
Link relay Jn\B
Link special relay Jn\SB
Word Link register Jn\W
Link special register Jn\SW
Intelligent function module Word Intelligent function module un\G
device device
Index register Word Index register Z*1
File register Word File register R
ZR
Constant Bit/word/dou | Decimal constant K
ble word Hexadecimal constant H
Real number | Real number constant E
Character Character string constant "ABC", etc.
string
Others Bit SFC block device BL
Bit SFC transition device BL\TR
Bit SFC step relay BL\S
Bit Direct input DX
Bit Direct output DY

*1: Z0 and Z1 cannot be used.

For Universal model QCPU/LCPU, Z16 to Z19 cannot be used.

2-2

2 SYSTEM CONFIGURATION

(3) Devices applicable to ST programs only
In ST programs, the contacts, coils and present values of the timers and counters
are represented and used as individual devices.
The device representations and types of the contacts, coils and present values of
the timers and counters are as indicated below.

Classification Type Device Representation
Internal user device Bit Timer contact TS
Timer coil TC
Retentive timer contact STS
Retentive timer coll STC
Counter contact CS
Counter coll CcC
Word Timer present value TN/T
Retentive timer present value STN/ST
Counter present value CN/C

Examples of use

(1) [ST program] [Equivalent list program]
MO: = TSO; LD TO
ouT MO

(2) [ST program] [Equivalent list program]
COUNTER_M(X0, CC20, 10); LD X0

OouT C20 K10

— /Point

For details of compatible instructions, refer to the following manual:
* MELSEC-Q/L Programming Manual (Common Instructions)

3 HANDLING OF CHARACTERS AND NUMERIC VALUES IN ST PROGRAMS

3 HANDLING OF CHARACTERS AND NUMERIC VALUES IN ST PROGRAMS
3.1 Usable Characters

The ST language is a programming language described in text format.
It can be described as in document editing using a general text editor, but the grammar
and usable characters and symbols have been defined.

(1) Usable characters
The following characters can be used in ST programs.

Locations of Application
Character 3

Character Type Program Character -

Comment , Label Examples

statement string
Alphanumeric
P O O O O ABC, IF, DO

characters
Symbols
+-*1=<>[]() © © A? X (DO * D1)
.’_:;$#Ill{}
Space @) O O X
Line feed code O O X X
TAB code O O X X

O: Can be used. X: Cannot be used. A: Part cannot be used.
*1: For the characters that cannot be used in labels, refer to "Appendix 1 Character
Strings that cannot be Used as Labels and FB Names".
*2: A double quotation (") cannot be used in a character string.
Doing so will result in a conversion error.

3 HANDLING OF CHARACTERS AND NUMERIC VALUES IN ST PROGRAMS

(2) Character types

The characters used in ST programs can be classified as indicated below.

Classification

Description

Example

Label name

Character string defined as
desired by the user.

It includes a function block
name, array name, structure
name, etc.

Switch_A

Constant

Value written directly to a
program.

(Integer, real number,
character string, etc.)

123, "abc"

Comment

Commentary statement that
is not the processing target
of control in a program.

(* Turns ON *)

Data type
name

Word that represents a data
type.

BOOL, DWORD

Control

syntax
Reserved

Word whose meaning has
been defined grammatically
for use as a control syntax.

IF, CASE, WHILE, RETURN

word Device

name

Data name for MELSEC
PLC

X, Y, M, ZR

Function
name

MELSEC function/IEC
function name already
defined.

OUT_M
REAL_TO_STR_E

Operator

Character code whose
meaning has been defined
for an expression or
assignment statement.

Delimiter

Character code whose
meaning has been defined to
clarify a program structure.

Other symbols

Code for putting a layout in
order.

Space
Line feed code, TAB

3 HANDLING OF CHARACTERS AND NUMERIC VALUES IN ST PROGRAMS

3.2 Data Handling

3.2.1 Data types

In ST programs, the types of used data have been defined.
Sections 3.2 and 3.3 indicate the data types and their representation methods in ST

programs.

The following data types can be used in ST programs.

_ . Typein C
Data Type Definition Range Type in Ladder
Language
BOOL Boolean type TRUE-FALSE,1+0" Bit bool
INT Integer type -32768 to 32767 Word signed short
DINT Double precision -2147483648 to Double word signed long
integer type 2147483647
REAL Real number type -3.402823"% to Real number float
-1.175495%, 0.0,
+1.175495 to
+3.402823"%
STRING Character string Up to 50 characters Character string | char
type can be defined.
ARRAY Array data type Depends on the data Array char[], etc.
type of the specified
element.
STRUCT | Structured data type | Depends on the data Structure struct

type of the specified
element.

*1: KO, K1, HO and H1 for specification of K and H cannot be used as the BOOL type.

_/Pint

@ Precautions when an operation result exceeds the data type range

When an operation result exceeds the data type range, correct result cannot

be obtained.

3 HANDLING OF CHARACTERS AND NUMERIC VALUES IN ST PROGRAMS

3.2.2 About ANY type

Use the ANY type when multiple data types are permitted for the argument, return
value, etc. of a function. The ANY type is a data type that handles any data type and is
available in different types indicated in the following table.

For example, when the argument of a function has been defined as ANY_NUM, any
data type can be specified as an argument from the word type, double word type and
real number type.

[Description example]
REAL EXPT(REAL In1, ANY_NUM In2); (* Function definition of function EXPT *)

I: Word type, double word type or real number
type can be specified.

* When a word type device is specified
ReallLabel := EXPT(E1. 0, DO);

* When a double word type label is specified
ReallLabel := EXPT(E1. 0, DWLabel);

* When a real number is specified
RealLabel := EXPT(E1. 0, E1. 0);

The data types and device types corresponding to the ANY types are as indicated below.

Data Type BOOL INT DINT REAL STRING
ANY Type Type in ladder Bit Word Double Real Char.acter
word number string

ANY O O O O O
ANY_SIMPLE O O O @) O
ANY_BIT O A O - -
ANY_NUM — O O @) -
ANY_REAL - - - O -
ANY_INT - O O -
ANY16 - O - - -
ANY32 - - O - -

O : Can be specified as corresponding type.

— : Cannot be specified.

A : Can be used for device, constant and digit specification, but cannot be used for label.
[1: Can be used for constant and digit specification.

3 HANDLING OF CHARACTERS AND NUMERIC VALUES IN ST PROGRAMS

3.2.3 Array and structure

In ST programs, arrays and structures can be used as data.
Arrays and structures are data having a structure that can be handled as one block in a
program when their elements are defined with local or global labels before use.

(1) Array
An array is a data type that has been defined by combining multiple data of the
same type.
For an array in an ST program, each element can be referred to individually by
specifying its element number within [] after the variable (label) name defined for
the array type.
The specification numbers of the array elements are counted from 0.

[Format]
Array name[specification number of array element]

[Image diagram]
When a word type array having four elements is set to have the array name of
Unit price, the specification numbers of the array elements are 0, 1, 2, 3.

Unit price[0] Unit price[1] Unit price[2] Unit price[3]

| 100 | 1200 | 1300 | 800 |

For a word type array, word data enters each array element.

[Description example]
Unit price [0] := 100; (* 10 is assigned to the first element of the array *)

(* 1200 is assigned to the second element of the array using device D1 *)
D1:=1;
Unit price[D1] := 1200;

Data type INT can be used as
the specification number of the
array element.

(*Unit price [0] + Unit price [1] is assigned to the third element of the array *)
Unit price [2] := Unit price [0] + Unit price [1];

peni = 3;
Unit price[pen1] := 800;
%

A label can be used as the
specification number of the
array element.

3 HANDLING OF CHARACTERS AND NUMERIC VALUES IN ST PROGRAMS

P

@ Precaution for use of the specification numbers of the array elements

When an array has n elements, the specification numbers of the array elements
are 0 to n-1. Hence, if n or more is specified, an error will occur at the time of

conversion.

Example: When an array has four elements

Unit price [4]: = 100; < Error occurs.

@ Precaution for use of arrays in the specification number of the array element
Arrays can be used in the specification number of the array element. Up to five

arrays can be nested. Using 17 or more arrays will result in a conversion error.
Example: When five arrays are nested

Unit price [Unit price [Unit price [Unit price [Unit price [D1]]]]] = 100;

@ Precaution for setting the specification number of the array element
Since there is a possibility that the data of the other devices may be corrupted,

be careful so that the value specified as the array element number does not
exceed the number of array elements.

@ Precaution for setting the number of array elements

Enter the number of elements on the global (local) variable setting screen. The
number of elements that can be entered is 256.

3 HANDLING OF CHARACTERS AND NUMERIC VALUES IN ST PROGRAMS

(2) Structure
A structure is a data type defined by combining the data of any types.
Each element can be referred to individually by describing the element name
after the variable (label) name defined for the structure type, with a period (.)
placed between them.
The element name is also called a member variable.

[Format]
Structure name.structure element name

[Image diagram]

When the setting is as follows

Structure name stocking,

Structure element:
One word type Structure element name Unit No
One real number type Structure element name unit price
One character string type Structure element name name of
article

Stocking

100 Unit No

Unit price

"APPLE" Name of

article

[Description example]
(* 100 is assigned to structure element Unit No *)
Stocking.Unit No := 100;

(* 98.2 is assigned to structure element Unit price *)
Stocking.Unit price := E98.2;

(* "APPLE" is assigned to structure element Name of article *)
Stocking.Name of article := “APPLE”;

— /Point

@ Precaution for use of the member variables of a structure
The number of members that can be entered on the structure variable setting
screen is 128.

3 HANDLING OF CHARACTERS AND NUMERIC VALUES IN ST PROGRAMS

3.3 Data Representation Methods

Constants, labels and devices can be used as data in ST programs.

L Representation
Iltem Description
Example

Constant Numeric value or character string data written directly to 123, “ABC”

a program. It does not change during program execution. '
Label Data whose type and name are defined by the user. Switch_A
Device Device used by the QCPU (Q mode)/LCPU. ltis

) .)) X0, YO, D100, J1\X0

identified by the device name and device number.

3.3.1 Constants

Each constant is represented as described below in ST programs.

Data Type |Numeric Notation Representation Method Example
TRUE « FALSE 1-0 MO := TRUE;
Binary The used binary number is preceded by "2#". | MO := 2#0;
MO = 2#1;
BOOL Octal The used octal number is preceded by "8#". MO := 8#0;
MO = 8#1;
Hexadecimal The used hexadecimal number is preceded MO = 16#0;
by "16#". MO := 16#1;
Binary The used binary number is preceded by "2#". | DO := 2#110;
Octal The used octal number is preceded by "8#". DO := 8#377;
Decimal The used decimal number is preceded by D0 :=123;
INT "10#". DO := K123;
DINT (The numeric value may be preceded by "K".)
Hexadecimal The used hexadecimal number is preceded DO := 16#FF,;
by "16#". DO := HFF;
(The numeric value may be preceded by "H".)
REAL The used real number is directly input. ABC :=2.34;
(The numeric value may be preceded by "E".) | Rtest:= E2.34;
STRING A character string is enclosed by ' * (or " "). Stest = ABCS
Stest := “ABC”;

For the range that can be specified for each constant, refer to Section 3.2.1 Data types.
The following ranges apply to the areas that are not described in Section 3.2.1 Data types.

3 HANDLING OF CHARACTERS AND NUMERIC VALUES IN ST PROGRAMS

[K, H representation]

Value Range IEC Data Type
K-32768 to K32767 INT, ANY16
K-2147483648 to K2147483647 DINT, ANY32

KO to K32767

ANY_BIT (word) "

KO to K2147483647

ANY_BIT (double word) 2

HO to HFFFF

INT, ANY16, ANY BIT (word) '

HO to HFFFFFFFF

SINT, ANY32, ANY BIT (double word) 2

[K, H-less representation]

Value Range IEC Data Type
0to 1 BOOL
-32768 to 32767 INT
-2147483648 to 2147483647 DINT
0 to 4294967295 ANY BIT (double word) ™
0 to 65535 ANY BIT (word) "'
-32768 to 65535 ANY16
-2147483648 to 4294967295 ANY32
240 to 2#1 BOOL
840 to 8#1
1640 to 1641
240 to 2#1111_1111_1111_1111 INT
840 to 8#177777 ANY16
16#0 to 16#FFFF ANY BIT (word) ™"
240 to DINT
2#1111_1111_1111_1111_1111_1111_1111_1111 | ANY_BIT (double word)?
840 to S#3777TTTTTTT ANY32

16#0 to 16#FFFFFFFF

*1: Indicates when handled as a word device.
<Example> DO := NOT(K32767);

*2: Indicates when handled as a double word device.

<Example> K8MO := NOT(K2147483647);

3 HANDLING OF CHARACTERS AND NUMERIC VALUES IN ST PROGRAMS

P

@ Precaution for use of the H, 2#, 8# and 16#-specified numeric values in word
label and word device operation expressions
When the value handled in operation is in the range H8000 to HFFFF, the
operation result available by ST program conversion differs from the operation
result available by the assignment of a value to a device in the PLC CPU.

Since whether the handled value is a word type or double word type cannot be
judged in the operation result available by ST program conversion, it is operated
as unsigned, but it is operated as signed in the PLC CPU.

<Example of use>

Data1 = -32768;

Data2 = 16#8000;

*ST Result:= Data1/ Data2; — -32768 / 32768 = -1
* CPU Result := Data1 / Data2; — -32768 /-32768 = 1

@ Precaution for use of "$" and “' ” in character string type data
"$" is used as an escape sequence.

Two hexadecimal numbers following "$" are recognized as the ASCII code, and
the characters corresponding to the ASCII code are inserted into the character
string.

A conversion error will occur when the two hexadecimal numbers following "$"
do not correspond to the ASCII code.

However, an error will not occur when the characters following "$" are any of the

following.
Representation Symbol/Printer Code Used in Character String
$% $
3 .
$L or $1 Line feed
$N or $n Change line
$P or $p Page scrolling
$R or $r Carriage return
$T or $t Tab

Example: Value := “$'APPLE$' $$100";

@ Precaution for binary, octal, decimal, hexadecimal and real number

representations

In binary, octal, decimal, hexadecimal or real number representation, " _
(underscore)" can be used for ease of identification. " " is ignored as a numeric
value.

Example: 2#1101_1111 8#377_1 16#01FF_ABCD 22_323 1.0_1
(When K, H or E is specified, " " cannot be used.)

3 HANDLING OF CHARACTERS AND NUMERIC VALUES IN ST PROGRAMS

3.3.2 Labels

In ST programs, labels can be used with data.

When labels are used in an ST program, label declaration must be made on the local
variable setting screen or global variable setting screen before use.

(For the label and structure label declaration methods, refer to the "GX Developer
Operating Manual".)

Label representation examples in ST programs are as follows.

Example: Switch_A:= FALSE; (* FALSE is assigned to Switch_A. *)

Example: IF INT_TO_BOOL(Unit_No) = FALSE THEN
Line_No := 2147483647;

END_IF;
(* IF INT_TO_BOOL (Unit_No) is FALSE *)
(* 2147483647 is assigned to Unit_Number. *)
Example: Limit A :=E1.0; (* 1.0 is assigned to Limit_A *)

Example: Conveyor[4] := Unit_No; (* The value of Unit_No is assigned to *)
(* the fifth element of Conveyor. *)

Example: stPressure.Status := TRUE; (* TRUE is assigned to *)
(* element name Status of stPressure. *)

Example: stPressure.eLimit ;= E1.0; (* 1.0 is assigned to *)
(* element name eLimit of stPressure. *)

3 HANDLING OF CHARACTERS AND NUMERIC VALUES IN ST PROGRAMS

REFERENCE

® Label declaration procedure

Make label declaration on the local variable setting screen or global variable
setting screen.

The local variable setting screen can be opened by performing the following
operation.

=I-#] Program
- EE MA

GX Developer start — [Open project] —

The following example shows the label setting made on the local variable setting

screen.
| Al Lahel Constant Device type
1| |Switch_A BOOL -
2 Unit_Mo IMT -
3 Line_Ma DIMNT
4 Lirnit_A REAL
g Canveyer IMTE200

When structure label is to be declared
1) Declare the structure element.

GX Developer start — [Open project] — Double-click the structure tab
=88] ST_PRO_ENG

E|-- Struckure
— Add new structure — % stockma | —Double-click "STOCKING" or

“-EH| ADDRESS

"ADDRESS".—Structure variable setting screen

The following example shows the structure element label setting made on the

structure variable setting screen.
Lahel Dievice type

1 Unit_Mao INT hd
2 |Unit Price REAL -

2) Declare the structure label.

Make structure label declaration on the local variable setting screen or global
variable setting screen.

The local variable setting screen can be opened by performing the following
operation.

EI-#] Program

-] MAIN
- % — Double-click Header icon

— Local variable setting screen

The following example shows the structure label setting made on the local
variable setting screen.

Constant Device tvpe

3 HANDLING OF CHARACTERS AND NUMERIC VALUES IN ST PROGRAMS

P

@ Precaution for use of the pointer type, timer type, counter type and retentive
timer type labels
The pointer type, timer type, counter type or retentive timer type label can be

declared, but if it is used in an ST program as a label, a conversion error will
occur and the label cannot be used.

@ Precaution for use of the timer type, counter type and retentive timer type labels
If the timer type, counter type or retentive timer type label is defined in the
member variable of a structure, that member variable cannot be used on the ST
edit screen. However, the other member variables of a structure that include the
timer type, counter type and retentive timer type labels can be used.

3 HANDLING OF CHARACTERS AND NUMERIC VALUES IN ST PROGRAMS

3.3.3 Devices

(1) How to use devices
In an ST program, devices of QCPU (Q mode)/LCPU can be used by directly
describing them without labels being used. Devices can be used in the left and
right members of an expression and the argument, return value, etc. of a
function.

[Description example]
MO := TRUE; (* MO is turned ON. *)

IF INT_TO_BOOL(DQ) = FALSE THEN (*If INT_TO_BOOL(DO) is FALSE *)
WO :=1000; (* 1000 is assigned to WO0. *)
END_IF;

REMARK

@ When devices are to be specified ...
Devices can be specified in both upper case and lower case.
@ What devices are available?
For available devices, refer to "2.1.3(2) Applicable devices" in this manual.

(2) Other using methods
The following three methods can be used as the device modification and
specifying methods.
These can be used in the same usage as when devices are used in ladder
programs. The following gives the description examples and explanations for use
of devices in ST programs. (For details of each using method, refer to the
"MELSEC-Q/L Programming Manual (Common Instructions)".)

(a) Index modification
(b) Bit specification
(c) Digit specification

3 HANDLING OF CHARACTERS AND NUMERIC VALUES IN ST PROGRAMS
L]

(a) Index modification
Index modification is indirect address specification using the index register.
When the index register is used, the device number is (directly specified
device number) + (index register contents).

[Description example]
(* The target D device number is changed for the numeric value in Z2 *)

(* When 1 is in Z2, the target device number changes from D(0+1) to D1. *)
72 :=1; (* 1 is assigned to index register Z2 *)
D0Z2 := KO; (* KO is assigned to D0Z2 *)

D1
(b) Bit specification

By specifying the bit No. of a word device, it can be used as a bit device.
DO.1

Word device Bit No.

[Description example]
D0.0 = TRUE; (* Bit 0 of DO device is turned ON. *)
WO.F = FALSE; (* Bit 15 of WO device is turned OFF. *)

(c) Diqit specification
By specifying the 4 bits, 8 bits, 12 bits, etc. of a bit device as a single digit,
word data or double word data can be handled by the bit device.
K4Xx0

Digit specification Bit device

[Description example]
K4X0 := D0; (* 16 bits are used from X0 device as integer
type (INT) and DO is assigned. *)

Witest := K1X0; (* 4 bits are assigned to word type label
Wtest from X0 device. *)

Dwtest := K5XO0; (* 20 bits are assigned to double word type
label Dwtest from X0 device. *)

3 HANDLING OF CHARACTERS AND NUMERIC VALUES IN ST PROGRAMS

REMARK

@ Data type when digit specification is used ...
When digit specification is used, the data types are as follows.
Example: When X0 is used
Integer type (INT): K1X0, K2X0, K3X0, K4X0
Double precision integer type (DINT): K5X0, K6X0, K7X0, K8X0

— Point

@ Precaution 1 for use of digit specification

A conversion error will occur if the data type differs between the right member
and left member.

Example: DO := K5XO0;
Since K5XO0 is a double word type and DO is a word type, the above
program will result in an error.
@ Precaution 2 for use of digit specification

If the right member is greater than the left member, data will be transferred to
the left member within the range of the applicable number of points.

(For the applicable number of points for digit specification, refer to the MELSEC-
Q/L Programming Manual (Common Instructions).)

Example: K5XO0 :=2#1011_1101_1111_0111_0011_0001;
K5XO0 : Applicable number of points = 20 points
1101_1111_0111_0011_0001 (20 digits) is assigned to K5XO.

4 ST PROGRAM EXPRESSIONS

4 ST PROGRAM EXPRESSIONS

4.1 Assignment Statement

An assignment statement has a function to assign the result of an expression in the
right member to a label or device in the left member.

In the assignment statement, the result of the expression in the right member must be

equal to the data type in the left member. If they are different, a conversion error will
occur.

[Description example]
* When actual device is used
DO:=0;
When this expression is executed, a decimal number of 0 is assigned to DO.

* When label is used

When the character string type label of Stest is used
Stest : = "APPLE";

When this expression is executed, character string "APPLE" is assigned to Stest.

P

@ Precaution for assigning a character string

A character string of up to 32 characters can be assigned. A conversion error
will occur if a character string of more than 32 characters is assigned.

@ Precaution for use of a device in the left member of an assignment statement
The TS, TC, STS, STC, CS, CC, BL, DX, BL\S, or BL\TR device cannot be used
in the left member of an assignment statement. A conversion error will occur if
any of the above devices is used in the left member.

4 ST PROGRAM EXPRESSIONS

4.2 Operators

4.2.1 Operator list

This section gives a list of operators usable in ST programs and their examples of use.

The following table lists the operators used in ST programs and indicates the priorities
at the time of operation execution.

Operator Description Priority
() Parenthesis expression Highest
Function () Function parameter list A
* Exponent (exponentiation) tei**shisuu
NOT Boolean complement

(Bit inverted value)

* Multiplication
/ Division
MOD Modulus operation
+ Addition
- Subtraction
<, >, <=, >= Comparison
= Equality
<> Inequality
AND, & Logical product
XOR Exclusive logical add
OR Logical sum Lowest

When the priorities are the same, evaluation is made from the left-hand side to the
right-hand side operators.

The following table lists the operators, applicable data types and operation result data

types.

Operator Applicable Data Type Operation Result Data Type
- ANY_NUM ANY_NUM
<, >, <=, >3 =, <> ANY_SIMPLE BOOL
MOD ANY_INT ANY_INT
AND, &, XOR, OR, NOT ANY _BIT” ANY BIT"

ANY_ REAL (base)

" ANY_NUM (exponent) ANY_REAL

*1: Except the label and constant (negative range).

4 ST PROGRAM EXPRESSIONS

P

@ Precaution 1 for use of operator

A conversion error will occur if the applicable data in the right member of an
operator is not the same in data type as the applicable data in the left member.

@ Precaution 2 for use of operator

The number of used operators that can be described in a single expression is

up to 1024. A conversion error will occur if 1025 or more operators are used.

REMARK

@ Explanation of ANY type ...
For the explanation of the ANY type, refer to "3.2.2 About ANY type".

4 ST PROGRAM EXPRESSIONS

4.2.2 Examples of using the operators

The following gives the examples of using the operators in ST programs.

(1) Operation of integer type (INT)
(a) When actual devices are used
[Example of use]
DO : = D1 * (D2 + K3) / K100;

<<QOperation order>>

1)D2 + K3

2) (D2 + K3) * D1

3) (D2 + K3) * D1/ K100

4) The result of 3) is assigned to DO.

(b) When labels are used
¢ When word type labels Dtest1, Dtest2 are used
[Example of use]
Dtest2 : = Dtest1 MOD (D2 + K3) * K100;

<<QOperation order>>

1)D2 + K3

2) Dtest1 MOD (D2 + K3)

3) Dtest1 MOD (D2 + K3) * K100

4) The result of 3) is assigned to Dtest2.

¢ When double word type labels Dwtest1, Dwtest2 are used
[Example of use]
Dwtest2 : = Dwtest1 - Dwtest1 / K100;

<<QOperation order>>

1) Dwtest1 / K100

2) Dwtest1 - Dwtest1 / K100

3) The result of 2) is assigned to Dwtest2.

_/Point

@ Precautions when an operation result exceeds the data type range

be obtained.

For data type range, refer to Section 3.2.1.

When an operation result exceeds the data type range, correct result cannot

4 ST PROGRAM EXPRESSIONS

(2) Operation of Boolean type (BOOL)
(a) When actual devices are used
[Example of use]
MO : = X0 AND X1 AND (D1 = 100);

<<QOperation order>>
1) Only when the result of X0 AND X1 is ON and D is 100, MO turns ON.

(b) When labels are used
¢ When bit type labels Btest1, Btest2 are used
[Example of use]
Btest2 : = Btest2 OR Btest1;

<<QOperation order>>
1) When Btest2 or Btest1 is ON, Btest2 turns ON.

4 ST PROGRAM EXPRESSIONS

4.3 Control Syntaxes

Conditional statements and repeat statements are available for ST programs to
perform comparison and repetition.

Conditional statement: When a certain condition is satisfied, the selected statement is
executed.

Repeat statement: One or more statements are executed repeatedly according to
the state of a certain variable or condition.

4.3.1 Control syntax list

The following table lists the control syntaxes.

. IF conditional statement
Conditional statement

CASE conditional statement

FOR ... DO syntax

Repeat statement WHILE ... DO syntax

REPEAT ... UNTIL syntax

RETURN syntax

Other control syntaxes

EXIT syntax

— /Point

@ Precaution for use of a hierarchy for a control syntax
A hierarchy of up to 16 levels is enabled for a control syntax. A conversion error
will not occur if 17 or more levels are used. However, since a deep hierarchy
may make a program difficult to understand, it is recommended to program a
hierarchy up to 4 or 5 levels at the deepest.

4 ST PROGRAM EXPRESSIONS

4 3.2 Conditional statements

(1) IF THEN conditional statement
[Format]

IF <Boolean expression> THEN

END_IF;

<Statement ... >

[Explanation]

The statement is executed when the Boolean expression (conditional
expression) is TRUE. If the Boolean expression is FALSE, the statement is
not executed.

Any Boolean expression can be used if it returns TRUE or FALSE as the
result of Boolean operation of the condition of a single bit type variable or a
complicated expression including many variables.

Conditional
expression

TRUE

Statement

[Description example]
(a) When actual device is used in Boolean expression

IF X0 THEN (* If X0 is ON, 0 is assigned to DO.)
DO :=0; (* If the X0 area is X0= TRUE, the meaning is *)
(* the same. *)

END _IF;

(b) When operator is used in Boolean expression

IF (D0*D1) <= 200 THEN (* If DO*D1 is less than or equal to 200 *)
DO :=0; (* 0 is assigned to DO. *)
END_|IF;

(c) When label is used in Boolean expression

IFw_Real >2.0 THEN (* If w_Real is greater than 2.0 *)
DO:=0; (* 0 is assigned to DO. *)
END_IF;
4-7

4 ST PROGRAM EXPRESSIONS

2) When label w_Str is specified as character string type
IF w_Str="ABC" THEN (* If w_Stris "ABC"
DO :=0; (* 0 is assigned to DO.
END_IF;

3) When label w_Str is specified as character string type
IF w_Str ="ABC' THEN (* If w_Stris 'ABC'
DO :=0; (* 0 is assigned to DO.
END _IF;

(d) When function block is used in Boolean expression

When function block name w_FB is set to the local variable setting and word

type label w_Out is set as the output variable of the function block

After the function block is executed

(For the method of using the function block, refer to the "GX Developer

Version 8 Operating Manual".)
IFw_FB. w_Out =100 THEN (* If w_Out is 100
DO:=0; (* 0 is assigned to DO.
END_IF;

(e) When function is used in Boolean expression
IF INT_TO_BOOL (D0) = FALSE THEN

DO : = 0; (* If INT_TO_BOOL (D0) is FALSE

(* 0 is assigned to DO.
END_IF;

4 ST PROGRAM EXPRESSIONS

(2) IF ... ELSE conditional statement
[Format]

IF <Boolean expression> THEN
<Statementt ... >

ELSE
<Statement2 ... >

END _IF;

[Explanation]
Statement 1 is executed when the Boolean expression (conditional
expression) is TRUE.
Statement 2 is executed if the value of the Boolean expression is FALSE.

Conditional
expression

TRUE

Statement 1 Statement 2

[Description example]
(a) When actual device is used in Boolean expression

IF X0 THEN (* If the X0 area is X0= TRUE, the meaning is
(* the same.
DO :=0; (* If X0 is ON, 0 is assigned to DO.
ELSE (* If X0 is not ON, 1 is assigned to DO.
DO:=1;
END_IF;

(b) When operator is used in Boolean expression
IF (DO*D1) <= 200 THEN (* If DO*D1 is less than or equal to 200

DO :=0; (* 0 is assigned to DO.

ELSE (* If DO*D1 is not less than or equal to 200
DO:=1; (* 1 is assigned to DO.

END _IF;

(c) When function is used in Boolean expression
IF INT_TO_BOOL (D0) = FALSE THEN
(* If INT_TO_BOOL(DO) is FALSE

DO :=0; (* 0 is assigned to DO.

ELSE (* If INT_TO_BOOL(DO) is not FALSE
DO:=1; (* 1 is assigned to DO.

END_IF;

* *

*

~— ~— ~— ~—

4 ST PROGRAM EXPRESSIONS
L]

(3) IF ... ELSIF conditional statement
[Format]

IF <Boolean expression 1> THEN
<Statement 1 ... >

ELSIF <Boolean expression 2> THEN
<Statement 2 ... >

ELSIF <Boolean expression 3> THEN
<Statement 3 ... >

END_IF;

[Explanation]
Statement 1 is executed when Boolean expression (conditional expression)
1 is TRUE. Statement 2 is executed if the value of Boolean expression 1 is
FALSE and the value of Boolean expression 2 is TRUE.
Statement 3 is executed if the value of Boolean expression 2 is FALSE and
the value of Boolean expression 3 is TRUE.

Conditional FALSE

expression 1

Conditional
expression 2

Statement 1

Conditional

Statement 2

Statement 3

4 ST PROGRAM EXPRESSIONS

[Description example]
(a) When actual devices are used in Boolean expressions

IF DO <100 THEN (* If DO is less than 100
D1:=0; (* 0 is assigned to D1.

ELSIF DO <= 200 THEN (* If DO is less than or equal to 200
D1:=1; (* 1 is assigned to D1.

ELSIF DO <= 300 THEN (* If DO is less than or equal to 300
D1:=2; (* 2 is assigned to D1.

END _IF;

(b) When operators are used in Boolean expressions

IF (D0*D1) < 100 THEN (* If DO*D1 is less than 100
D1:=0; (* 0 is assigned to D1.

ELSIF (D0*D1) <=200 THEN (* If DO*D1 is less than or equal to 200
D1:=1; (* 1 is assigned to D1.

ELSIF (D0*D1) <= 300 THEN (* If DO*D1 is less than or equal to 300
D1:=2; (* 2 is assigned to D1.

END_IF;

(c) When functions are used in Boolean expressions
IF INT_TO_BOOL (D0) = TRUE THEN (* If INT_TO_BOOL (DO0) is

(* TRUE
D1:=0; (* 0 is assigned to D1.
ELSIF INT_TO_BOOL (D0) = TRUE THEN (* If INT_TO_BOOL(D2) is
(* TRUE
D1:=1; (* 1 is assigned to D1.

END_IF;

* *

*

*

*

*
~— ~— ~— ~— ~— ~—

*

*

*

*
~— ~— ' ~— ~— ~—

4 ST PROGRAM EXPRESSIONS

(4) CASE conditional statement
[Format]

CASE <Integer expression> OF
<Integer selection 1> : <Statement 1>
<Integer selection 2> : <Statement 2>

<Integer selection n> : <Statement n>
ELSE
<Statement n+1 ...>
END CASE;

@ Specifying method that can be used for <Integer selection *> in
CASE conditional statement
One value, multiple values, or a value range can be specified for <Integer
selection *> in the CASE conditional statement as indicated below.

Example:

1: (* When the value of the integer expression is 1 *)
2,3,4: (* When the value of the integer expression is any of 2, 3 and 4 *)
5..10: (* When the value of the integer expression is any of 5 to 10 *)

When ".." is used to specify the range, make the value following ".." greater
than the value preceding "..".

Also, multiple values and range specification can be combined to specify
values.

1,2..5,9: (* When the value of the integer expression is any of 1, 2..5, and 9 *)

@ Data types that can be used in <integer expression> of CASE
conditional statement
The data types that can be specified as the <integer expression> in the CASE
conditional statement are the integer type (INT) and double precision integer
type (DINT). The word devices and word type or double word type labels can
be specified.

[Explanation]
The result of the expression in the CASE conditional statement is returned
as an integer value. This conditional statement can be used when a
selection statement is executed with a single integer value or the integer
value of the result of a complicated expression, for example.
The statement having the integer selection that matches the value of the
integer expression is executed first, and if there are no matches, the
statement that follows ELSE is executed.

4 ST PROGRAM EXPRESSIONS

TRUE

= Selection 1?

Statement 1

TRUE

= Selection 2?

Statement n+1 Statement n

Statement 2

[Description example]
(a) When actual device is used in integer expression

CASE DO OF
1:
D1:=0; (*IfD0Ois 1, 0 is assigned to D1.
2,3:
D1:=1; (*IfDOis 2 or 3, 1is assigned to D1.
4..6:
D1:=2; (*IfD0Ois any of 4 to 6, 2 is assigned to D1.
ELSE
D1:=3; (*If DO is other than the above, 3 is assigned to D1.
END_CASE;

(b) When operation result is used in integer expression
CASE D0*D1 OF

1:
D1:=0; (*IfD0O*D1is 1, 0 is assigned to D1.
2,3:
D1:=1; (*IfD0*D1is 2 or 3, 1 is assigned to D1.
4..6:
D1:=2; (*IfD0*D1is any of 4 to 6, 2 is assigned to D1.
ELSE
D1:=3; (*If DO*D1 is other than the above, 3 is assigned to D1.
END_CASE;

4 ST PROGRAM EXPRESSIONS

(c) When function is used in integer expression
CASE DINT_TO_INT (dData) OF

1: (* If DINT_TO_INT (dData) is 1
D1:=0; (*0is assigned to D1.

2,3 (* If DINT_TO_INT (dData) is 2 or 3
D1:=1; (*1is assigned to D1.

4.6: (* If DINT_TO-INT(dData) is any of 4 to 6
D1:=2; (*2is assigned to D1.

ELSE (* If DINT_TO_INT (dData) is other than the above
D1:=3; (* 3is assigned to D1.

END_CASE;

* * *

*

*

*

*
— O~ — — ~— ~— — ~~—

*

— Point

@ Precaution for use of integer selection
When a CASE conditional statement has multiple values of the same integer
selection, the statement on the upper line is executed with priority and the latter
statement having the same integer selection is not executed. For example,
when the D100 value is 3 in the following CASE conditional statement,
statement 3 having integer selection 3 is executed and statement 4 having the
same integer selection is not executed.

CASE D100 OF
1: < Statement 1 ...>
2: < Statement 2 ...>
3: < Statement 3 ...>
3,4: < Statement4 ..>
ELSE

< Statement 5 ...>
END_CASE;

To specify the <integer selection *>, only a decimal number without K
specification can be used.

4 ST PROGRAM EXPRESSIONS
L]

4.3.3 Repeat statement

(1) FOR...DO syntax
[Format]

FOR <Repeat variable initialization>
TO <Last value expression>
BY <Incremental expression> DO
< Statement ...>

END_FOR,;

Repeat variable initialization: The data used as a repeat variable is initialized.
Last value expression, incremental expression:

The initialized repeat variable is incremented or
decremented according to the incremental

expression, and repetitive processing is performed
until the last value is reached.

@ Data types that can be used in <Last value expression, incremental
expression> of FOR syntax

Integer values and the integer values of operation expression results can be
specified.

[Explanation]

The FOR ... DO syntax repeatedly executes several statements according
to the value of the repeat variable.

— /Point

@ Precaution for use of repeat variable

The double precision integer type (DINT) and integer type (INT) can be used for
a repeat variable, but structure elements and array elements cannot be used.

Also, match the type used for the repeat variable with the types of the <last
value expression> and <incremental expression>.

@ Precaution for use of incremental expression
The <incremental expression> can be omitted. When omitted, the <incremental
expression> is executed as 1.

When "0" is assigned to the <incremental expression>, the FOR syntax and
later may not be executed or an endless loop may occur.

@ Precaution for use of FOR ... DO syntax

In the FOR ... DO syntax, the count processing of the repeat variable is
performed after execution of <Statement ...> in the FOR syntax. An endless
loop will occur if the count processing higher than the maximum value or lower
than the minimum value of the data type of the repeat variable is executed.

4-15

4 ST PROGRAM EXPRESSIONS

I
Repeat variable
initialization

Repeat variable
< last value?

TRUE

Statement

Repeat variable +
incremental value

|
,

[Description example]
(a) When actual device is used in repeat variable

FORW1:=0 (* W1 is initialized with 0.)
TO 100 (* Processing is repeated until W1 reaches 100. *)
BY 1 DO (* W1 is incremented by 1.)
W3 :=W3+1; (*During repeat processing, W3 is incremented by 1.%)
END_FOR;

4 ST PROGRAM EXPRESSIONS

(2) WHILE...DO syntax
[Format]

WHILE <Boolean expression> D0
<Statement ...>
END_WHILE;

[Explanation]
The WHILE ... DO syntax executes one or more statements while the
Boolean expression (conditional expression) is TRUE.
The Boolean expression is judged before execution of the statement. If the
Boolean expression is FALSE, the statement in WHILE ... DO is not
executed. Since the <Boolean expression> in the WHILE syntax is only
required to return whether the result is true or false, all expressions that can
be specified in the <Boolean expression> in the IF conditional statement
can be used.

Repeat
conditional
expression

FALSE

Statement

|
!

[Description example]
(a) When actual device and operator are used in Boolean expression
WHILE W100 < (W2-100) DO (* While W100<(W2-100) is true
(* processing is repeated.
W100: =W100 + 1; (* During repeat processing, W100 is *
(* incremented by 1

* *
~— ~— ~— ~—

*

END_WHILE;

(b) When function is used in Boolean expression
WHILE BOOL_TO_DINT(MOQ) < BOOL_TO_DINT(M1) DO

D4:=D4 +1; (* While BOOL_TO_DINT(MO) <)
(* BOOL_TO_DINT(M1) is true)
(* processing is repeated.)
(* During repeat processing, D4 is)
(* incremented by 1)
END_WHILE;

4 ST PROGRAM EXPRESSIONS

(3) REPEAT...UNTIL syntax
[Format]

REPEAT

<Statement ...>

UNTIL <Boolean expression>
END_REPEAT;

[Explanation]
The REPEAT ... UNTIL syntax executes one or more statements while the
Boolean expression (conditional expression) is FALSE.
The Boolean expression is judged after execution of the statement. If the
value is TRUE, the statement in REPEAT ... UNTIL is not executed.
Since the <Boolean expression> in the REPEAT syntax is only required to
return whether the result is true or false, all expressions that can be
specified in the <Boolean expression> in the IF conditional statement can
be used.

l¢
[C

Execution statement

Conditional
expression

TRUE

[Description example]
(a) When actual device is used in Boolean expression

REPEAT
D1:=D1+1; (* Until D1 becomes less than 100)
UNTIL D1 <100 (* D1 is incremented by 1)
END_REPEAT;

(b) When operator is used in Boolean expression

REPEAT
W1 :=WO0*W1 - DO; (* Until WO*W1 becomes less than 100 *)
(*WO*W1-DO0is *)
UNTIL WO0*W1 <100 (* assigned to W1. *)
END_REPEAT;

4 ST PROGRAM EXPRESSIONS
L]

— Point

(c) When function is used in Boolean expression
REPEAT
D1:=D1+1; (* Until BOOL_TO_DINT(MO)*
(* than 100
UNTIL BOOL_TO_DINT(MOQ) <100 (* becomes less
(* D1 is incremented by 1

END_REPEAT;

~

*

*

~ ~— ~—

@ Precaution 1 for use of repeat statements
When using a repeat statement, be careful not to result in endless loop

processing.

@ Precaution 2 for use of repeat statements
If many repeat statements are used, it should be noted that the PLC scan time

will increase remarkably.

4 ST PROGRAM EXPRESSIONS
L]

4.3.4 Other control syntaxes

(1) RETURN syntax
[Format]

[reTURN:

[Explanation]
The RETURN syntax is used to terminate a program in a function block or
an ST program.
When the RETURN syntax is used in a program, the processing after the
RETURN syntax are all ignored, and a jump occurs from the place where

RETURN is executed to the last line of the ST program or the program in
the function block.

Program

RETURN

Jump

A

[Description example]
(a) When actual device is used in IF conditional statement Boolean expression

IF X0 THEN (If X0 is ON, the statement in IF is executed.)
RETURN; (* The program after the RETURN line is ignored. *)
END_IF;

4 ST PROGRAM EXPRESSIONS

(2) EXIT syntax
[Format]

[exim.

[Explanation]
The EXIT syntax can be used in the repeat statement of an ST program
and terminates a repeat loop midway.
When the EXIT syntax is reached during execution of a repeat loop, the

repeat loop processing after the EXIT syntax is not executed. The program

is continued on the line that follows the one where the repeat loop
processing has been terminated.

FALSE

Loop statement

Conditional
statement

FALSE

EXIT

Statement

[Description example]
(a) When actual device is used in IF conditional Boolean expression
FORDO:=0TO10D0 (* If the DO value is less than or equal to 10,
(* repeat is executed.
IF D1>10 THEN (* Whether the D1 value is greater than 10
(* or not is checked.

EXIT; (* If the D1 value is greater than 10,
(* repeat processing
(* ends.
END_IF;
END_FOR;

*

*

*

*

*

*

4 ST PROGRAM EXPRESSIONS

4.3.5 Precautions for use of control syntaxes

This section explains the number of used steps, operation processing time and
instructions for use of the control syntaxes in an ST program.

(1) Number of used steps and operation processing time for use of
control syntaxes

The number of used steps and operation processing time for use of the control
syntaxes will be explained.
The operation processing time is calculated by addition of the processing times of

the instructions. Use it as reference for program creation.

(a) IF conditional statements

IF conditional statement 1

Unit (us)

Operation Processing

Operation Processing

Number of Steps i .
Time (Q25H) Time (Q00J)

IF X0 THEN

ST program DO : =100; 7 1.534 10.9
END_IF;

) LD X0

List program 3 0.134 0.90

MOV K100 DO

[Remarks]

complicated comparison can be made easily.

In only the conditional statement area, the processing time is shorter than when ST is not used.
However, since the comparison target of the IF conditional statement in ST is the Boolean expression,

IF conditional statement 2

Unit (us)

Operation Processing

Operation Processing

Number of Steps i .
Time (Q25H) Time (Q00J)

IF DO :=0THEN

ST program DO : =100; 9 1.6 11.5
END_IF;

) LD X0

List program 5 0.20 1.50

MOV K100 DO

[Remarks]

complicated comparison can be made easily.

In only the conditional statement area, the processing time is shorter than when ST is not used.
However, since the comparison target of the IF conditional statement in ST is the Boolean expression,

4 ST PROGRAM EXPRESSIONS

(b) CASE conditional statement

Unit (us)
Operation Processing | Operation Processing
Number of Steps i .
Time (Q25H) Time (Q00J)
CASE DO OF
1,2:
DO : =100;
ST program 29 5.004 36.1
3..10:
D1:=D1+1;
END_CASE;
LD= DO K1
AND= DO K2
) MOV K100 DO
List program 16 0.64 4.6
LD>= DO K3
AND<= DO K10
INC D1

[Remarks]

measured.

Since CJ, JMP, etc. need not be executed in a list unlike ST, only the times for the compared areas are

The time has been calculated on the assumption that the compared areas are conducting.

(c) FOR...DO statement

Unit (us)

Number of Steps

Operation Processing
Time (Q25H)

Operation Processing
Time (Q00J)

FORDO:=0TO010BY 1 D0

Initialization: 0.134
Repeat: 3.308

Initialization: 0.9

ST program D1:=D1+1; 16 In this case, the
Repeat: 24.0
END_FOR; repeated area operates
10 times.
FOR K10
) LD SM400
List program 6 2.574 21.6
INC D1
NEXT

[Remarks]

The above operation processing time is taken by the number of repeat times.
In a list, only the number of repeat times can be specified. In ST, repeat and other operation processing can be
performed by condition comparison.

4 ST PROGRAM EXPRESSIONS

(d) WHILE...DO statements

WHILE...DO statement 1 Unit (us)
Operation Processing | Operation Processing
Number of Steps) .
Time (Q25H) Time (Q00J)

WHILE X0 DO 3.034
ST program DO : = 100; 10 Repeat is executed until 21.9

END_ WHILE; X0 becomes TRUE.
List program |As above As above As above As above

[Remarks]

the processing time is also the same as that of ST.

If the statement is described in a list, the program is the same as the ST program conversion result. Therefore,

WHILE...DO statement 2

Unit (us)

Number of Steps

Operation Processing

Operation Processing

Time (Q25H) Time (Q00J)
WHILE D0= 100 DO
ST program DO : =100; 15 3.1 225
END_ WHILE;
List program |As above As above As above As above

[Remarks]

the processing time is also the same as that of ST.

If the statement is described in a list, the program is the same as the ST program conversion result. Therefore,

4 ST PROGRAM EXPRESSIONS

(e) REPEAT...UNTIL statements

REPEAT...UNTIL statement 1 Unit (us)
Operation Processing | Operation Processing
Number of Steps) .
Time (Q25H) Time (Q00J)

REPEAT 1534

ST DO =100: 6 R ti ' ted until 10.9
program UNTIL X0 epeat is executed unti .
X0 becomes TRUE.

END_ REPEAT;

List program |As above As above As above As above

[Remarks]

the processing time is also the same as that of ST.

If the statement is described in a list, the program is the same as the ST program conversion result. Therefore,

REPEAT...UNTIL statement 2

Unit (us)

Operation Processing | Operation Processing
Number of Steps i .
Time (Q25H) Time (Q00J)
REPEAT
1.6
ST DO =100: 9 R ti ted until 11.5
program UNTIL X0 epeat is executed unti .
X0 becomes TRUE.

END_ REPEAT;

List program |As above As above As above As above

[Remarks]

the processing time is also the same as that of ST.

If the statement is described in a list, the program is the same as the ST program conversion result. Therefore,

4 ST PROGRAM EXPRESSIONS

(f) EXIT statement

Unit (us)
Operation Processing | Operation Processing
Number of Steps i .
Time (Q25H) Time (Q00J)
ST program — 3 1.4 11
List program |As above As above As above As above

[Remarks]

time is also the same as that of ST.

Using the JMP instruction, execution moves to the pointer immediately after repeat processing termination.
If the statement is described in a list, the operation is the same as in the ST program. Therefore, the processing

(g) RETURN statement

Unit (us)
Operation Processing | Operation Processing
Number of Steps i .
Time (Q25H) Time (Q00J)
ST program — 3 1.4 11
List program |As above As above As above As above

[Remarks]

time is also the same as that of ST.

Using the JMP instruction, execution moves to the pointer immediately after repeat processing termination.
If the statement is described in a list, the operation is the same as in the ST program. Therefore, the processing

4 ST PROGRAM EXPRESSIONS

(2) Precautions for use of bit devices

The following explains the precautions to be taken when a program is created
using an IF/CASE conditional statement in an ST program.

Once the Boolean expression (conditional expression) is satisfied in the IF
condition statement, when a bit device is turned ON in the IF condition statement,
that bit device becomes always ON.

[ST program example 1]
IF MO THEN
YO0 := TRUE;
END_IF;

The above program is equivalent to the following.
LD MO;
SET Y0;

To avoid the bit device being always ON, change the program as shown below.

[ST program example 2]

IF MO THEN
YO := TRUE;
ELSE
YO := FALSE;
END_IF;

The above program is equivalent to the following.
(a) LD MO;
OUT Y0;

(b) YO := MO;
(c) OUT_M (MO, YO);

However, when OUT_M() is used in the IF conditional statement, the condition is
as in [ST program example 1].

The above precautions also apply to when the CASE conditional statement is
used.

Once the integer expression (conditional expression) is satisfied in the CASE
condition statement, when a bit device is turned ON in the CASE condition
statement, that bit device becomes always ON.

4 ST PROGRAM EXPRESSIONS

(3) Precautions for use of timers and counters

The following explains the precautions to be taken when a program is created

using an IF/CASE conditional statement in an ST program.

In the IF condition statement, the Boolean expression (conditional expression)

differs from the execution condition of the timer/counter instruction.

Example: In the case of timer
[ST program example 1]
IF MO THEN
TIMER_M (M1, TCO, K10);
END_IF;
(* When MO = ON and M1 = ON, counting starts.
(* When MO = ON and M1 = OFF, counting is cleared.

(* When MO = OFF and M1 = ON, counting is stopped. The counting

(* value is not cleared.
(* When M0 = OFF and M1 = OFF, counting is stopped. The cou
(* value is not cleared.

Example: In the case of counter
[ST program example 2]
IF MO THEN
COUNTER_M (M1, CCO, K10);
END_IF;

nting

(* When MO = ON and M1 = ON/OFF, counting is incremented by 1.

(* When M0 = OFF and M1 = ON/OFF, counting is not executed.

(* MO = ON/OFF and counting incrementing by 1 are not synchronized.

The above occurs since the timer/counter-related statement is not executed if

the IF condition statement is not satisfied.

When the AND condition of MO and M1 is used to operate the timer/counter, do

not use the control syntax but use only the MELSEC function.

[Changed ST program example]
* When timer is used TIMER_M (MO & M1, TCO, K10);
* When counter is used COUNTER_M (MO & M1, CCO0, K10)

Using the new program, the timer/counter can be operated under the AND

condition of MO and M1.

The above precautions also apply to when the CASE conditional statement is

used.

*

*

*

*
~— O~ N ' ' ~—

*

~

*

~

In the CASE condition statement, the integer expression (conditional expression)

differs from the execution condition of the timer/counter instruction.

4 ST PROGRAM EXPRESSIONS

4 4 Call of Function Block

In an ST program, a function blocks (FB) can be used.

This section explains the method of using a user-created FB in an ST program. (For
the FB creating method, refer to the "GX Developer Version 8 Operating Manual
(Function Block)".

(1) Call of function block
When a created FB is to be used in an ST program, an FB name must be
defined first on the local variable setting screen. (Refer to .)
The FB can be used by describing the defined FB name (FB call) in the ST
program.

When calling the FB, describe all input variables and /O variables. Also, always
specify values for the input variables and /O variables.

For an output variable, its description can be omitted if the result of the output
variable is not needed.

[Description example]
When the following FB is created
FB dataname :LINE1_FB

Input variable ;1 _Test
Output variable : O _Test
I/O variable :10_Test

FB label name :FB1
The description example of a FB call is as given below.
FB1(1_Test:=DO0, O_Test: = D1, I0_Test: =D100):

!

The description of the output variable can be omitted.

(2) How to acquire the output result
By providing "." after the FB name to specify the output variable name, the
output of the FB can be acquired.

[Description example]
Describe as given below when assigning the result of the output variable to

D1.

D1:= FB1.0_Test;

4 ST PROGRAM EXPRESSIONS

REFERENCE

@ To make label declaration for the input, 1/O and output variables of FB ...

GX Developer start — [Open project] — Click the FB tab — Add new FB

ERER
E@ Function Block,
=-E Fet) .
— B ool — Double-click Header icon

j;l;ﬁl Eady

— FB label setting screen

The following example shows the FB input/output variable label setting made on the
FB label setting screen.

[nputiCutput Label Constant Device tvpe
1 |WAR_INPUT > |l TEST T hd
2 |VAR_QUTPUT = [0O_TEST INT -
3 |WVAR_IMN_OUT « |[O_TEST INT -

@ To make label declaration for the FB data name ...

Before an FB is called, the label declaration of the used FB must be made.

(=)-##%] Program
L EHE) MaN

- — Double-click Header icon
b E‘ Body
— Local (or global) variable setting screen
Al Label Caonstant Device type
1 HLahel BOOL -
2 Dol abel DIMT -
3 lahel2 Setting detail FB{FB1) -
4 COUMTER -
STOREDTIMER
POINTER
STRUCTURE
FH (.
FE{FB1} -

l
Select FB in Device type.

The following example shows the FB label definition made on the local variable
setting screen.

[3 | |iaberz | Setting detail [FB(FBE1) - |

4 ST PROGRAM EXPRESSIONS

P

@ Precaution for acquiring the FB output

Execute FB output acquirement after an FB call. If it is executed before an FB
call, an error will occur.

Example: FB name: FB1
Input variable :1_Test
Output variable: O_Test

D1:=FB1.0_Test; (* FB output acquirement *)
FB1(l_Test:=DO0, O _Test:=D1); (* FB call *)

An error occurs since this program is written in order of FB output
acquirement and FB call.

@ Precaution for use of I/0 variables

If the result of an 1/O variable is used like an output variable, an error will occur.

Like an input variable, the value of an I/O variable must be specified at the time
of an FB call.

Example: FB name: FB1
I/O variable :10_TEST
Output variable: O_Test

[Description example]
FB1(10_Test: =D1);
D1 : FB1.10_Test; — An error occurs.

@ Precaution for making an FB call

In an ST program, the FB set on the local variable setting screen can be used
only once. (If it is used more than once, an error will occur.) To use the same FB
more than once, declare the FB by the number of times it will be used
beforehand on the local variable setting screen.

Example: The following example shows that the FB label has been defined more
than once on the local variable setting screen.

All Labkel Constant Device type
1 label Setting detail FB{FB1) -
2 labell Setting detail FB{FB1) -
a lakel2 Setting detail FE{FBE1) =

In the program, the FB is used as indicated below.
label (I_Test := D0, I0_Test := D100);

label1 (I_Test := D1, I0_Test := D150);

label2 (I_Test := D3, I0_Test := D200);

4 ST PROGRAM EXPRESSIONS

4.5 Comment
In an ST program, comments can be input. An area enclosed by "(*" and "*)" is
handled as a comment. If a comment is placed within a comment, an error will occur.

[Description example]
Example 1: (* The pump is activated. *)
Example 2. (************************************)
Example 3: (* After the switch is input, the motor is operated. *)
Example 4: (* Flag_A = TRUE control start (* Flag_B = TRUE control stop *)

[Error example]
Example 5: (* Flag_A = TRUE control start *) Flag_A = FALSE control stop *)
Example 6: (* START (* Processing stop *) Restart End *)

4 ST PROGRAM EXPRESSIONS

MEMO

-33

5 MELSEC FUNCTIONS

5 MELSEC FUNCTIONS

How the functions are described

This manual describes the function definitions, arguments, return values and using
examples of the MELSEC functions.

The MELSEC functions are created on the basis of the MELSEC common commands.
For the applicable CPU types, basic operations, detailed functions and applicable
devices of the functions and the errors that may occur during execution of the
functions, refer to the "MELSEC-Q/L Programming Manual (Common Instructions)".
The reference section is the section described in "Corresponding MELSEC command"”.

5.1.1 Qutput to device OUT_M
\
The execution condition is output to the specified device. — 1)
® Function definiton ~ BOOL OUT_M (BOOL EN, BOOL D),
2) 3) 4) 5)
| Argument Name IN/JOUT Description
EN IN Execution condition —6)
D ouT Target to be turned ON/OFF
Return Value Description
BOOL Execution condition —7)
@ Example of use — 8)
(* Execution condition X0 is output to the assigned device of bData. *)
OUT_M (X0, bData);
LQ ® Corresponding MELSEC command
- OUT (Output) — 9)

1) Indicates the function of the function.

2) Indicates the data type of the function.

3) Indicates the function name.

4) Indicates the data type of the argument. (The STRING type is represented
STRING (number of characters). It is represented STRING(6) when the
number of characters is 6. The ARRAY type is represented data type(number
of elements). It is represented ANY16(3) when the array is of ANY16 type and
has three elements.)

5) Indicates the argument name.

6) Indicates the list (argument name, IN/OUT, description) of arguments used
with the function. (The STRING type is represented ARRAY [0..Number of
elements-1] OF Data type. It is represented ARRAY [0..2] OF ANY16 when
the array is of ANY16 type and has three elements.)

7) Indicates the list (return value name, description) of return values used with
the function.

8) Indicates the example of using the function. (Indicates the example that uses
the actual device/label.)

9) Indicates the QCPU (Q mode)/LCPU MELSEC command corresponding to the
function.

5 MELSEC FUNCTIONS

The following indicates the correspondences between the MELSEC command in the
"MELSEC-Q/L Programming Manual (Common Instructions)" and the MELSEC
function in this manual.

MELSEC-Q/L Programming Manual (Common Instructions) [MELSEC instruction]

6.7.6 BIN block data comparisons (BKCMP I, BKCMP [IP)

(T (2 (0 € —

indicates an instruction symbol of =/ < >/ >/ <=/ </ >=.

Command
BKCMP{] | | ke 1] & | & [©® [n H
Command
BKCMP[] - [I o ® [@ [© | n }—{
3) 4) 5) 6) 7)

: Data to be compared or head number of the devices where the data to be compared is stored (BIN 16 bits)
: Head number of the devices where the comparison data is stored (BIN 16 bits)

: Head number of the devices where the comparison operation result will be stored (bits)

: Number of comparison data blocks (BIN 16 bits)
Constants
Other - 2)
O

5@ ® @

Setting Internal Devices e NESIH

@ ®® ®

O
W O

O|0 |0 |0
|

O O —

-_—

[MELSEC function] in this manual

5.4.1 Block data comparison (=) BKCMP_EQ_M

i N

n points of BIN 16-bit data (word unit), starting at the specified devices, are compared in terms of "=".
B Function definition ~ BOOL BKCMP_EQ_M (BOOL EN, ANY16 51, ANY16 52, ANY16 n, BOOL Dy,
8) 9) 10) 11) 12)

-—

5 MELSEC FUNCTIONS

1) Applicable CPU types
CPU types that can use the instructions are indicated.

2) Applicable devices

* The correspondences between the arguments of the MELSEC function and
MELSEC command are as follows. (The arguments of the same argument
names correspond to each other.)

| 3-8 | #-9 | s5<10 | no11) | 612 |

— Point

@ Precaution for use of the arguments of the MELSEC and IEC functions
When the argument is of ANY32 type, the data type that can be specified is the
DIN type, and therefore, an actual device cannot be specified. Only the double
word type label can be specified. However, digit specification is allowed.
Example: BSQR_MD(BOOL EN, ANY16 s, ANY32 d);
(* Function definition of BSQR_MD *)
BSQR_MD (X0, DO, dData); (* Program example)
In the MELSEC common command, an actual device can be
described as indicated below.
BSQR(DO, WO0);
However, it cannot be described in the MELSEC/IEC function.
BSQR_MD(X0, DO, W0); < An error will occur.
When the argument is of REAL type, the data type that can be specified is the
real number type label, or a real number value can be described directly.

An actual device cannot be specified.

Example: ESTR_M(BOOL EN, REAL s1, ANY16(3) s2, STRING d);

(* Function definition of ESTR_M *)
ESTR_M(XO0, rData, ArrayData, sData);
(* Program example *)
In the MELSEC common command, the actual device can be
described as indicated below.
ESTR(RO, R10, D10);
However, it cannot be described in the MELSEC/IEC function.
ESTR_M(XO0, RO, ArrayData, sData); < An error will occur.

5 MELSEC FUNCTIONS

5.1 Output
5.1.1 Output to device OuUT_M
\
The execution condition is output to the specified device.
B Function definiton =~ BOOL OUT_M (BOOL EN, BOOL D);
Argument Name INJOUT Description
EN IN Execution condition
D ouT Target to be turned ON/OFF
Return Value Description
BOOL Execution condition
@ Example of use
(* Execution condition X0 is output to the assigned device of bData. *)
OUT_M (X0, bData);
m @ Corresponding MELSEC command
- OUT (Output)
5.1.2 Low-speed timer TIMER_M
\

When the coil of the timer (low-speed timer, low-speed retentive timer) turns ON, the timer measures up to the
set value, and when the timer times out (calculation value (set value), the contact is put in the following status.
N/O contact: Conduction N/C contact: Non-conduction

B Function definiton ~ BOOL TIMER_M (BOOL EN, BOOL TCoil, ANY16 TValue);

| Argument Name IN/OUT Description
EN N Execution condition (Function is executed only
when the result is TRUE)
TColl IN TS, TC device or STS, STC device (bit data)
TValue IN Timer set value (BIN 16-bit data)

Remarks: When a constant is specified for the timer set value, only a decimal number
can be specified.

The timer set value can be specified within the range 0 to 32767.

Return Value Description
BOOL Execution condition
@ Example of use
(* When execution condition X0 turns ON, TCO turns ON and the timer calculates
(* up to TValue, and when the timer times out (calculation value (set value),
(* the contact is put in the following status.
(* N/O contact: Conduction N/C contact: Non-conduction
TIMER_M (X0, TCO, TValue);

@ @ Corresponding MELSEC command

» OUT T (Low-speed timer)

For the usable data type, refer to "3.2.2
About ANY type".

5 MELSEC FUNCTIONS

5.1.3 High-speed timer TIMER_H_M

TN

When the coil of the timer (high-speed timer, high-speed retentive timer) turns ON, the timer calculates up to the
set value, and when the timer times out (calculation value (set value), the contact is put in the following status.
N/O contact: Conduction N/C contact: Non-conduction

B Function definition

BOOL TIMER_H_M (BOOL EN, BOOL TCoil, ANY16 TValue);

Argument Name IN/JOUT Description
EN IN Execution condition (Function is executed only when the
result is TRUE)
TCoil IN TS, TC device or STS, STC device (bit data)
TValue IN Timer set value (BIN 16-bit data)

Remarks: When a constant is specified for the timer set value, only a decimal number can be specified.
The timer set value can be specified within the range 0 to 32767.

Return Value Description

BOOL Execution condition

@ Example of use

(* When execution condition X0 turns ON, TCO turns ON and the timer calculates*

(* up to TValue, and when the timer times out (calculation value(TValue), the *

(* contact is put in the following status.

(* N/O contact: Conduction N/C contact: Non-conduction *
TIMER_H_M (X0, TCO, TValue);

*

)
)
)
)

L1

5.1.4 Counter

@ Corresponding MELSEC command
» OUTH T (High-speed timer)

COUNTER M

TN

The present value (count value) of the counter is incremented by 1, and when the counter counts up (present
value = set value), the contact is put in the following status.
N/O contact: Conduction N/C contact: Non-conduction

B Function definition

BOOL COUNTER_M (BOOL EN, BOOL CCoil, ANY16 CValue);

Argument Name IN/OUT Description
Execution condition (Function is executed only
EN IN when the result is TRUE)
CCaoil IN CS, CC device number (bit data)
CValue IN Counter set value (BIN 16-bit data)

Remarks: When a constant is specified for the counter set value, only a decimal
number can be specified.
The timer set value can be specified within the range 0 to 32767.

Return Value Description

BOOL Execution condition

@ Example of use
(* After execution condition X0 has turned ON, the present value (count value) is *
(* incremented by 1 when CCO changes from OFF to ON, and when the counter *
(* counts up (present value = CValue), the contact is put in the following status. *
(* N/O contact: Conduction N/C contact: Non-conduction *
COUNTER_M (X0, CCO, CValue);

~— — — ~—

@ Corresponding MELSEC command
* OUT C (Counter)

For the usable data type, refer to "3.2.2
About ANY type".

5 MELSEC FUNCTIONS

5.1.5 Set of device

SET M

TN

When the execution condition is satisfied, the specified device is operated as described below.
- Bit device: The coil/contact is turned ON.
= When bit of word device is specified: The specified bit is turned to 1.

H Function definition

BOOL SET_M (BOOL EN, BOOL D);

| Argument Name IN/JOUT Description
Execution condition (Function is executed only
EN IN when the result is TRUE)
D ouUT Data to be set
Return Value Description
BOOL Execution condition

@ Example of use
(* When execution condition X0 turns ON, the assigned device of bData is
(* turned ON.
SET_M (X0, bData);

L1

@ Corresponding MELSEC command
- SET (Set of device)

5.1.6 Reset of device RST_M

TN

When the execution condition is satisfied, the specified device is operated as described below.
« Bit device: The coil/contact is turned OFF.
- Timer, counter: O is assigned to the present value and the coil/contact is turned OFF.
- When bit of word device is specified: The specified bit is turned to 0.
« Word device other than timer and counter: 0 is assigned to the device data.

B Function definition

BOOL RST_M (BOOL EN, BOOL ANY_SIMPLE D);

Argument Name INJOUT Description
Execution condition (Function is executed only
EN IN when the result is TRUE)
D ouT Data to be reset
Remarks: The DINT/REAL/STRING type cannot be used in argument "D".
Return Value Description
BOOL Execution condition

@ Example of use
(* When execution condition X0 turns ON, the assigned device of bData is
(* turned OFF.
RST_M (X0, bData);

@ Corresponding MELSEC command
* RST (Reset of device)

For the usable data type, refer to "3.2.2
About ANY type".

5 MELSEC FUNCTIONS

5.1.7 Conversion of direct output into pulse DELTA_M

TN

When the execution condition is satisfied, the specified direct access output (DY) is output as a pulse.

B Function definiton =~ BOOL DELTA_M (BOOL EN, BOOL D);

Argument Name INJOUT Description
Execution condition (Function is executed only when the
EN IN result is TRUE)
D ouT Data to be output as pulse (DY device)
Return Value Description
BOOL Execution condition

@ Example of use
(*When execution condition X0 turns ON, device DYO is converted into pulse. *)
DELTA_M (X0, DY0);

@ @ Corresponding MELSEC command

* DELTA (Conversion of direct output into pulse)

5 MELSEC FUNCTIONS

5.2 1-Bit Shift

5.2.1 1-bit shift of device

SFT_M

When the execution condition is satisfied, the specified device is operated as described below.

= In the case of bit device:
The ON/OFF status of the device number preceding the specified device number is shifted to the
specified device number, and the preceding device number is turned OFF.
- In the case of word device bit specification:

The 1/0 status of the bit preceding the bit of the specified device is shifted to the specified bit, and the

preceding device number is turned to 0.

M Function definition

TN

BOOL SFT_M (BOOL EN, BOOL D);

Argument Name IN/JOUT Description
Execution condition (Function is executed only when the
EN IN result is TRUE)
D ouT Data to be shifted

Return Value

Description

BOOL

Execution condition

@ Example of use
(* When execution condition X0 turns ON, ON/OFF of M10 is shifted to M11

(* and M10 is turned OFF.

SFT_M (X0, M11);
(* When execution condition X0 turns ON, ON/OFF of W100.1 is shifted to
(* W100.2 and W100.1 is turned OFF.

SFT_M (X0, W100.2);

@ Corresponding MELSEC command
- SFT (Bit device shift)

5 MELSEC FUNCTIONS

5.3 Termination

53.1Stop STOP_M

TN

When the execution condition is satisfied, output Y is reset and the CPU operation is stopped.
(This operation is the same as performed when the RUN/STOP DIP switch is moved to the STOP position.)

B Function definition = BOOL STOP_M (BOOL EN);

Argument Name INJOUT Description
Execution condition (Function is executed only when the
EN IN result is TRUE)
Return Value Description
BOOL Execution condition
@ Example of use
(* When execution condition X0 turns ON, the CPU operation is stopped. *)

STOP_M (X0);

m @ Corresponding MELSEC command

» STOP (Sequence program stop)

5 MELSEC FUNCTIONS

5.4 Comparison Operation
5.4.1 Block data comparison (=) BKCMP_EQ_M

TN

n points of BIN 16-bit data (word unit), starting at the specified devices, are compared in terms of "=".
B Function definition = BOOL BKCMP_EQ_M (BOOL EN, ANY16 S1, ANY16 S2, ANY16 n, BOOL D);

Argument Name IN/OUT Description
Execution condition (Function is executed only when the
EN IN result is TRUE)
S IN Compared data (BIN 16-bit data)
S2 IN Comparison data (BIN 16-bit data)
n IN Number of data to be compared (BIN 16-bit data)
When comparison
D OUT Comparison |Comparison |condition is satisfied ON
result (bit) result When comparison OFF
condition is not satisfied
Return Value Description
BOOL Execution condition

@ Example of use
(* When execution condition X0 turns ON, the data of the number of points stored *)
(* in DO, starting at D100, is compared with the data of the number of points stored *)
(* in DO, starting at D200, in terms of "=", and the result stored into MO and later. ")
BKCMP_EQ_M (X0, D100, D200, DO, M0);

m @ Corresponding MELSEC command

- BKCMP= (BIN block data comparison (=))
5.4.2 Block data comparison (<>) BKCMP_NE_M

TN

n points of BIN 16-bit data (word unit), starting at the specified devices, are compared in terms of "<>".
B Function definiton = BOOL BKCMP_NE_M (BOOL EN, ANY16 S1, ANY16 S2, ANY16 n, BOOL D);

Argument Name INJOUT Description
Execution condition (Function is executed only when the
EN IN result is TRUE)
S IN Compared data (BIN 16-bit data)
S2 IN Comparison data (BIN 16-bit data)
n IN Number of data to be compared (BIN 16-bit data)

When comparison
Comparison |Comparison |condition is satisfied ON

D ouT -
result (bit) |result When comparison |
condition is not satisfied
Return Value Description
BOOL Execution condition

@ Example of use
(* When execution condition X0 turns ON, the data of the number of points stored in *)
(* DO, starting at D100, is compared with the data of the number of points stored *)
(* DO, starting at D200, in terms of "<>", and the result is stored into MO and later. *)
BKCMP_NE_M (X0, D100, D200, DO MO);

@ @ Corresponding MELSEC command

* BKCMP<> (BIN block data comparison (<>))
For the usable data type, refer to "3.2.2
About ANY type".

5 MELSEC FUNCTIONS

5.4.3 Block data comparison (>) BKCMP_GT_M

TN

n points of BIN 16-bit data (word unit), starting at the specified devices, are compared in terms of ">".
B Function definiton = BOOL BKCMP_GT_M (BOOL EN, ANY16 S1, ANY16 S2, ANY16 n, BOOL D);

Argument Name INJOUT Description
Execution condition (Function is executed only when the
EN IN result is TRUE)
S IN Compared data (BIN 16-bit data)
S2 IN Comparison data (BIN 16-bit data)
n IN Number of data to be compared (BIN 16-bit data)
When comparison
D OUT Comparison |Comparison |condition is satisfied ON
result (bit) result When comparison OFF
condition is not satisfied
Return Value Description
BOOL Execution condition

@ Example of use
(* When execution condition X0 turns ON, the data of the number of points stored *)
(* in DO, starting at D100, is compared with the data of the number of points stored *)
(* in DO, starting at D200, in terms of ">", and the result is stored into MO and later. *)
BKCMP_GT_M (X0, D100, D200, DO, MO);

@ @ Corresponding MELSEC command

- BKCMP> (BIN block data comparison (>))
5.4.4 Block data comparison (<=) BKCMP_LE_M

TN

n points of BIN 16-bit data (word unit), starting at the specified devices, are compared in terms of "<=".
B Function definiton BOOL BKCMP_LE_M (BOOL EN, ANY16 S1, ANY16 S2, ANY16 n, BOOL D);

Argument Name IN/JOUT Description
Execution condition (Function is executed only when the
EN IN result is TRUE)
S IN Compared data (BIN 16-bit data)
S2 IN Comparison data (BIN 16-bit data)
n IN Number of data to be compared (BIN 16-bit data)
When comparison
D OUT Comparison |Comparison |condition is satisfied ON
result (bit) result When comparison OFF
condition is not satisfied
Return Value Description
BOOL Execution condition

@ Example of use
(* When execution condition X0 turns ON, the data of the number of points stored *)
(* in DO, starting at D100, is compared with the data of the number of points stored *)
(* in DO, starting at D200, in terms of "<=", and the result is stored into MO and later. *)
BKCMP_LE_M (X0, D100, D200, DO, MO);

m @ Corresponding MELSEC command

- BKCMP<= (BIN block data comparison (<=))
For the usable data type, refer to "3.2.2
About ANY type".

5 MELSEC FUNCTIONS

5.4.5 Block data comparison (<) BKCMP_LT_M

TN

n points of BIN 16-bit data (word unit), starting at the specified devices, are compared in terms of "<".
B Function definition = BOOL BKCMP_LT_M (BOOL EN, ANY16 S1, ANY16 S2, ANY16 n, BOOL D);

Argument Name INJOUT Description
Execution condition (Function is executed only when the
EN IN result is TRUE)
S IN Compared data (BIN 16-bit data)
S2 IN Comparison data (BIN 16-bit data)
n IN Number of data to be compared (BIN 16-bit data)
When comparison
D OUT Comparison |Comparison |condition is satisfied ON
result (bit) result When comparison OFF
condition is not satisfied
Return Value Description
BOOL Execution condition

@ Example of use
(* When execution condition X0 turns ON, the data of the number of points stored *)
(* in DO, starting at D100, is compared with the data of the number of points stored *)
(* in DO, starting at D200, in terms of "<", and the result is stored into MO and later. *)
BKCMP_LT_M (X0, D100, D200, DO, MO);

m @ Corresponding MELSEC command

* BKCMP< (BIN block data comparison (<))
5.4.6 Block data comparison (>=) BKCMP_GE_M

TN

n points of BIN 16-bit data (word unit), starting at the specified devices, are compared in terms of ">=".
B Function definiton BOOL BKCMP_GE_M (BOOL EN, ANY16 S1, ANY16 S2, ANY16 n, BOOL D);

Argument Name INJOUT Description
Execution condition (Function is executed only when the
EN IN result is TRUE)
S IN Compared data (BIN 16-bit data)
S2 IN Comparison data (BIN 16-bit data)
n IN Number of data to be compared (BIN 16-bit data)
When comparison
D OUT Comparison |Comparison |condition is satisfied ON
result (bit) result When comparison OFF
condition is not satisfied
Return Value Description
BOOL Execution condition

@ Example of use
(* When execution condition X0 turns ON, the data of the number of points stored *)
(* in DO, starting at D100, is compared with the data of the number of points stored *)
(* in DO, starting at D200, in terms of ">=", and the result is stored into MO and later. *)
BKCMP_GE_M (X0, D100, D200, DO, MO);

@ @ Corresponding MELSEC command

- BKCMP>= (BIN block data comparison (>=))
For the usable data type, refer to "3.2.2
About ANY type".

5 MELSEC FUNCTIONS

5.5 Arithmetic Operation

5.5.1 Addition of BCD 4-digit data (2 devices) BPLUS_M
\

The specified two BCD 4-digit data are added.
B Function definiton = BOOL BPLUS_M (BOOL EN, ANY16 S1, ANY16 D);

Argument Name INJOUT Description
Execution condition (Function is executed only when the
EN IN result is TRUE)
S IN Addend data (BCD 4-digit data)
D INJOUT Augend data, addition result (BCD 4-digit data)
Return Value Description
BOOL Execution condition

@ Example of use
(* When execution condition X0 turns ON, the BCD 4-digit data stored in DO *)
(* and D100 are added, and the addition result is stored into D100. *)
BPLUS_M (X0, DO, D100);

@ @ Corresponding MELSEC command

- B+ (BCD 4-digit data addition)
5.5.2 Addition of BCD 4-digit data (3 devices) BPLUS 3 M
\

The specified two BCD 4-digit data are added.
B Function definiton =~ BOOL BPLUS_3_ M (BOOL EN, ANY16 S1, ANY16 S2, ANY16 D);

Argument Name IN/JOUT Description
Execution condition (Function is executed only when the

EN IN result is TRUE)

S IN Augend data (BCD 4-digit data)

S2 IN Addend data (BCD 4-digit data)

D ouT Addition result (BCD 4-digit data)

Return Value Description
BOOL Execution condition

@ Example of use
(* When execution condition X0 turns ON, the BCD 4-digit data stored in D1 *)
(* and D2 are added, and the addition result is stored into D100. *)
BPLUS_3_M (X0, D1, D2, D100);

@ @ Corresponding MELSEC command

- B+ (BCD 4-digit data addition)

For the usable data type, refer to "3.2.2
About ANY type".

5 MELSEC FUNCTIONS

5.5.3 Subtraction of BCD 4-digit data (2 devices) BMINUS_M

TN

Subtraction is performed between the specified two BCD 4-digit data.

M Function definition

BOOL BMINUS_M (BOOL EN, ANY16 S1, ANY16 D);

Argument Name IN/JOUT Description
Execution condition (Function is executed only when the
EN IN result is TRUE)
S IN Subtrahend data (BCD 4-digit data)
D IN/OUT Minuend data, subtraction result (BCD 4-digit data)
Return Value Description
BOOL Execution condition

@ Example of use
(* When execution condition X0 turns ON, subtraction is performed between the *)
(* BCD 4-digit data stored in DO and D100, and the subtraction result is stored *)
(* into D100.)
BMINUS_M (X0, DO, D100);

L1

@ Corresponding MELSEC command
- B- (BCD 4-digit data subtraction)

5.5.4 Subtraction of BCD 4-digit data (3 devices) BMINUS 3 M

TN

Subtraction is performed between the specified two BCD 4-digit data.

M Function definition

BMINUS_3_M (BOOL EN, ANY16 S1, ANY16 S2, ANY16 D);

Argument Name IN/JOUT Description
Execution condition (Function is executed only when the

EN IN result is TRUE)

S IN Minuend data (BCD 4-digit data)

S2 IN Subtrahend data (BCD 4-digit data)

D ouT Subtraction result (BCD 4-digit data)

Return Value Description
BOOL Execution condition

@ Example of use
(* When execution condition X0 turns ON, subtraction is performed between the *)
(* BCD 4-digit data stored in D1 and D2, and the subtraction result is stored *)
(* into D100. *)
BMINUS_3_M (X0, D1, D2, D100);

@ Corresponding MELSEC command
- B- (BCD 4-digit data subtraction)

For the usable data type, refer to "3.2.2
About ANY type".

5 MELSEC FUNCTIONS

5.5.5 Addition of BCD 8-digit data (2 devices) DBPLUS_M

The specified two BCD 8-digit data are added.

M Function definition

TN

BOOL DBPLUS_M (BOOL EN, ANY16 S1, ANY32 D);

Argument Name IN/JOUT Description
Execution condition (Function is executed only when the

EN IN result is TRUE)

S IN Addend data (BCD 8-digit data)

D IN/OUT Augend data, addition result (BCD 8-digit data)

Return Value Description
BOOL Execution condition
@ Example of use
(* When execution condition X0 turns ON, the BCD 8-digit data stored in)

(* dwData1 and Result are added, and the addition result is stored into Result. *)
DBPLUS_M (X0, dwData1, Result);

L1

@ Corresponding MELSEC command
- DB+ (BCD 8-digit data addition)

5.5.6 Addition of BCD 8-digit data (3 devices) DBPLUS 3 M

The specified two BCD 8-digit data are added.

B Function definition

TN

DBPLUS_3_M (BOOL EN, ANY32 S1, ANY32 S2, ANY32 D),

Argument Name INJOUT Description
Execution condition (Function is executed only when the

EN IN result is TRUE)

S IN Augend data (BCD 8-digit data)

S2 IN Addend data (BCD 8-digit data)

D ouT Addition result (BCD 8-digit data)

Return Value Description
BOOL Execution condition
@ Example of use
(* When execution condition X0 turns ON, the BCD 8-digit data stored in)

(* dwData1 and dwData2 are added, and the addition result is stored into Result. *)
DBPLUS_3 M (X0, dwData1, dwData2, Result);

@ Corresponding MELSEC command
- DB+ (BCD 8-digit data addition)

For the usable data type, refer to "3.2.2
About ANY type".

5 MELSEC FUNCTIONS

5.5.7 Subtraction of BCD 8-digit data (2 devices) DBMINUS_M

TN

Subtraction is performed between the specified two BCD 8-digit data.

M Function definition

BOOL DBMINUS_M (BOOL EN, ANY32 S1, ANY32 D);

Argument Name IN/JOUT Description
Execution condition (Function is executed only when the
EN IN result is TRUE)
S IN Subtrahend data (BCD 8-digit data)
D IN/OUT Minuend data, subtraction result (BCD 8-digit data)
Return Value Description
BOOL Execution condition

@ Example of use
(* When execution condition X0 turns ON, subtraction is performed between the *)
(* BCD 8-digit data stored in dwData1 and Result, and the subtraction resultis *)
(* stored into Result. *)
DBMINUS_M (X0, dwData1, Result);

L1

@ Corresponding MELSEC command
* DB- (BCD 8-digit data subtraction)

5.5.8 Subtraction of BCD 8-digit data (3 devices) DBMINUS 3 M

TN

Subtraction is performed between the specified two BCD 8-digit data.

M Function definition

BOOL DBMINUS_3_M (BOOL EN, ANY32 S1, ANY32 S2, ANY32 D);

Argument Name IN/JOUT Description
Execution condition (Function is executed only when the

EN IN result is TRUE)

S IN Minuend data (BCD 8-digit data)

S2 IN Subtrahend data (BCD 8-digit data)

D ouT Subtraction result (BCD 8-digit data)

Return Value Description
BOOL Execution condition

@ Example of use
(* When execution condition X0 turns ON, subtraction is performed between the *)
(* BCD 8-digit data stored in dwData1 and dwData2, and the subtraction result *)
(* is stored into Result. *)
DBMINUS_3_M (X0, dwData1, dwData2, Result);

@ Corresponding MELSEC command
- DB- (BCD 8-digit data subtraction)

For the usable data type, refer to "3.2.2
About ANY type".

5 MELSEC FUNCTIONS

5.5.9 Multiplication of BCD 4-digit data BMULTI_M

TN

The specified two BCD 4-digit data are multiplied.

M Function definition

BOOL BMULTI_M (BOOL EN, ANY16 S1, ANY16 S2, ANY32 D);

Argument Name IN/JOUT Description
Execution condition (Function is executed only when the
EN IN result is TRUE)
S IN Multiplicand data (BCD 4-digit data)
S2 IN Multiplier data (BCD 4-digit data)
D ouT Multiplication result (BCD 4-digit data)
Return Value Description
BOOL Execution condition

@ Example of use
(* When execution condition X0 turns ON, the BCD 4-digit data stored in D1 *)
(* and D2 are multiplied, and the multiplication result is stored into Result. *)
BMULTI_M (X0, D1, D2, Result);

L1

@ Corresponding MELSEC command
- B* (BCD 4-digit data multiplication)

5.5.10 Division of BCD 4-digitdata BDIVID_M

TN

Division is performed between the specified two BCD 4-digit data.

M Function definition

BOOL BDIVID_M (BOOL EN, ANY16 S1, ANY16 S2, ANY16(2) D);

Argument Name IN/JOUT Description
Execution condition (Function is executed only when the
EN IN result is TRUE)
S IN Dividend data (BCD 4-digit data)
S2 IN Divisor data (BCD 4-digit data)
Division result D[0] |Quotient
D ouT (ARRAY [0..1] OF ANY16) D[1] [Remainder
Return Value Description
BOOL Execution condition

@ Example of use
(* When execution condition X0 turns ON, division is performed between the *)
(* BCD 4-digit data stored in D1 and D2, and the division result is stored into *)
(* array ArrayResult. *)
BDIVID_M (X0, D1, D2, ArrayResult);

@ Corresponding MELSEC command
- B/ (BCD 4-digit data division)

For the usable data type, refer to "3.2.2
About ANY type".

5 MELSEC FUNCTIONS

5.5.11 Multiplication of BCD 8-digit data DBMULTI_M

TN

The specified two BCD 8-digit data are multiplied.
B Function definiton =~ BOOL DBMULTI_M (BOOL EN, ANY32 S1, ANY32 S2, ANY16(4) D);

| Argument Name IN/JOUT Description
Execution condition (Function is executed only when the
EN IN result is TRUE)
S IN Multiplicand data (BCD 8-digit data)
S2 IN Multiplier data (BCD 8-digit data)
D[0]
L Lower 4 digits
Multiplication result D[1]
b ouT (ARRAY [0..3] OF ANY16) D[2 !
B [2] Upper 4 digits
D[3]
Return Value Description
BOOL Execution condition
@ Example of use
(* When execution condition X0 turns ON, the BCD 8-digit data stored in)
(* dwData1 and dwData2 are multiplied, and the multiplication result is stored *)
(* into array ArrayResult. *)
DBMULTI_M (X0, dwData1, dwData2, ArrayResult);
@ @ Corresponding MELSEC command
- DB* (BCD 8-digit data multiplication)
5.5.12 Division of BCD 8-digit data DBDIVID_M
\
Division is performed between the specified two BCD 8-digit data.
B Function definition BOOL DBDIVID_M (BOOL EN, ANY32 S1, ANY32 S2, ANY32(2) D);
Argument Name INJOUT Description
Execution condition (Function is executed only when the
EN IN result is TRUE)
S IN Dividend data (BCD 8-digit data)
S2 IN Divisor data (BCD 8-digit data)
Division result D[0] [Quotient
D ouT (ARRAY [0..1] OF ANY32) D[1] [Remainder
Return Value Description
BOOL Execution condition

@ Example of use
(* When execution condition X0 turns ON, division is performed between the *)
(* BCD 8-digit data stored in dwData1 and dwData2, and the division resultis *)
(* stored into array ArrayResult. *)
DBDIVID_M (X0, dwData1, dwData2, ArrayResult);

m @ Corresponding MELSEC command

DB/ (BCD 8-digit data division)

For the usable data type, refer to "3.2.2
About ANY type".

5 MELSEC FUNCTIONS

5.5.13 Character string data connection (2 devices) STRING_PLUS M
\

The specified character string data are connected.
B Function definiton = BOOL STRING_PLUS_M (BOOL EN, STRING S1, STRING D);

Argument Name INJOUT Description
Execution condition (Function is executed only when the
EN IN result is TRUE)
S IN Data to connect (character string data)

Data to be connected, connection result (character string
data)

D INJOUT

Return Value Description

BOOL Execution condition

@ Example of use

(* When execution condition X0 turns ON, character string "ABC" is connected *)

(* to the end of the character string stored in StrResult and the connected *)

(* character strings are stored into StrResult. *)
STRING_PLUS_M (X0, "ABC" StrResult);

@ @ Corresponding MELSEC command

- $+ (Character string connection)

5.5.14 Character string data connection (3 devices) STRING_PLUS 3 M
\

The specified character string data are connected.
B Function definition = BOOL STRING_PLUS_3_M (BOOL EN, STRING S1, STRING S2, STRING D);

Argument Name IN/JOUT Description
Execution condition (Function is executed only when the
EN IN result is TRUE)
S IN Data to be connected (character string data)
S2 IN Data to connect (character string data)
D ouT Connection result (character string data)
Return Value Description
BOOL Execution condition
@ Example of use

(* When execution condition X0 turns ON, the character string stored in *)

(* StrData2 is connected to the end of the character string stored in StrData1 *)

(* and the connected character strings are stored into StrResult. *)

STRING_PLUS_3 M (X0, StrData1, StrData2, StrResult);

m @ Corresponding MELSEC command

» $+ (Character string connection)

For the usable data type, refer to "3.2.2
About ANY type".

5 MELSEC FUNCTIONS

5.5.15 BIN block addition

BKPLUS_M

TN

n points of BIN 16-bit data, starting at the specified devices, are added.
BOOL BKPLUS_M (BOOL EN, ANY16 S1, ANY16 S2, ANY16 n, ANY16 D);

B Function definition

Argument Name INJOUT Description
Execution condition (Function is executed only when the

EN IN result is TRUE)

S IN Augend data (BIN 16-bit data)
S2 IN Addend data (BIN 16-bit data)
n IN Number of addition data (BIN 16-bit data)

ouT Addition result (BIN 16-bit data)
Return Value Description

BOOL

Execution condition

@ Example of use
(* When execution condition X0 turns ON, the data of the number of points

(* stored in DO, starting at D100, and the data of the number of points stored in

%)
%)

(* DO, starting at D200, are added, and the result is stored into D1000 and later. *)
BKPLUS_M (X0, D100, D200, DO, D1000);

L1

5.5.16 BIN block subtraction

@ Corresponding MELSEC command
- BK+ (Block data addition)

BKMINUS_M

TN

Subtraction is performed between n points of BIN 16-bit data, starting at the specified devices.
BOOL BKMINUS_M (BOOL EN, ANY16 S1, ANY16 S2, ANY16 n, ANY16 D);

B Function definition

Argument Name INJOUT Description
Execution condition (Function is executed only when the
EN IN result is TRUE)
S IN Minuend data (BIN 16-bit data)
S2 IN Subtrahend data (BIN 16-bit data)
n IN Number of subtraction data (BIN 16-bit data)
D ouT Subtraction result (BIN 16-bit data)
Return Value Description

BOOL

Execution condition

@ Example of use
(* When execution condition X0 turns ON, subtraction is performed between
(* the data of the number of points stored in DO, starting at D100, and the data
(* of the number of points stored in DO, starting at D200, and the result is
(* stored into D1000 and later.
BKMINUS_M (X0, D100, D200, DO, D1000);

*

*
~— — — ~—

@ Corresponding MELSEC command
- BK- (Block data subtraction)

For the usable data type, refer to "3.2.2
About ANY type".

5 MELSEC FUNCTIONS

5.5.17 Increment INC_M

\
The specified BIN 16-bit data is incremented (by 1).
B Function definition BOOL INC_M (BOOL EN, ANY16 D);
Argument Name INJOUT Description
Execution condition (Function is executed only when the
EN IN result is TRUE)
D IN/OUT Increment data, incrementing result (BIN 16-bit data)
Return Value Description
BOOL Execution condition

@ Example of use
(* When execution condition X0 turns ON, the data stored in DO is incremented by 1.*)
INC_M (X0, DO);

m @ Corresponding MELSEC command

= INC (BIN 16-bit increment)
5.5.18 Decrement DEC_M

\
The specified BIN 16-bit data is decremented (by 1).
B Function definition BOOL DEC_M (BOOL EN, ANY16 D);
Argument Name INJOUT Description
Execution condition (Function is executed only when the
EN IN result is TRUE)
D IN/OUT Decrement data, decrementing result (BIN 16-bit data)
Return Value Description
BOOL Execution condition

@ Example of use
(* When execution condition X0 turns ON, the data stored in DO is decremented by 1. *)
DEC_M (X0, DO0);

m @ Corresponding MELSEC command

- DEC (BIN 16-bit decrement)

For the usable data type, refer to "3.2.2
About ANY type".

5 MELSEC FUNCTIONS

5.5.19 32-bit BIN increment DINC_M

\
The specified BIN 32-bit data is incremented (by 1).
B Function definition BOOL DINC_M (BOOL EN, ANY32 D);
Argument Name INJOUT Description
Execution condition (Function is executed only when the
EN IN result is TRUE)
D IN/OUT Increment data, incrementing result (BIN 32-bit data)
Return Value Description
BOOL Execution condition
@ Example of use
(* When execution condition X0 turns ON, the data stored in dwData1 is)
(* incremented by 1. *)
DINC_M (X0, dwData1);
m @ Corresponding MELSEC command
* DINC (BIN 32-bit increment)
5.5.20 32-bit BIN decrement DDEC_M
\
The specified BIN 32-bit data is decremented (by 1).
B Function definition BOOL DDEC_M (BOOL EN, ANY32 D);
Argument Name INJOUT Description
Execution condition (Function is executed only when the
EN IN result is TRUE)
D IN/OUT Decrement data, decrementing result (BIN 32-bit data)
Return Value Description
BOOL Execution condition
@ Example of use
(* When execution condition X0 turns ON, the data stored in dwData1 is *)
(* decremented by 1. *)

DDEC_M (X0, dwData1);

m @ Corresponding MELSEC command

* DDEC (BIN 32-bit decrement)

For the usable data type, refer to "3.2.2
About ANY type".

5 MELSEC FUNCTIONS

5.6 Data Conversion

5.6.1 BIN—BCD conversion @ BCD_M

\
The specified BIN 16-bit data (0 to 9999) is converted into BCD 4-digit data.

B Function definiton =~ BOOL BCD_M (BOOL EN, ANY16 S1, ANY16 D);

Argument Name INJOUT Description
Execution condition (Function is executed only when the
EN IN result is TRUE)
S IN Data to be converted (BIN 16-bit data)
D ouT Conversion result (BCD 4-digit data)
Return Value Description
BOOL Execution condition
@ Example of use
(* When execution condition X0 turns ON, the BIN data stored in DO is *)
(* converted into BCD, and the result is stored into D100. *)

BCD_M (X0, DO, D100);

@ @ Corresponding MELSEC command

- BCD (Conversion from BIN data to 4-digit BCD data)
5.6.2 32-bit BIN—BCD conversion @ DBCD_M

\
The specified BIN 32-bit data (0 to 99999999) is converted into BCD 8-digit data.

B Function definition =~ BOOL DBCD_M (BOOL EN, ANY32 S1, ANY32 D);

Argument Name IN/JOUT Description
Execution condition (Function is executed only when the
EN IN result is TRUE)
S IN Data to be converted (BIN 32-bit data)
D ouT Conversion result (BCD 8-digit data)
Return Value Description
BOOL Execution condition

@ Example of use
(* When execution condition X0 turns ON, the BIN data stored in dwData1 is *)
(* converted into BCD, and the result is stored into Result. *)
DBCD_M (X0, dwData1, Result);

m @ Corresponding MELSEC command

* DBCD (Conversion from BIN data to 8-digit BCD data)

For the usable data type, refer to "3.2.2
About ANY type".

5 MELSEC FUNCTIONS

5.6.3 BCD—BIN conversion BIN_M

\
The specified BCD 4-digit data (0 to 9999) is converted into BIN 16-bit data.

B Function definiton ~ BOOL BIN _M (BOOL EN, ANY16 S1, ANY16 D);

Argument Name INJOUT Description
Execution condition (Function is executed only when the
EN IN result is TRUE)
S IN Data to be converted (BCD 4-digit data)
D ouT Conversion result (BIN 16-bit data)
Return Value Description
BOOL Execution condition
@ Example of use
(* When execution condition X0 turns ON, the BCD data stored in DO is *)
(* converted into BIN, and the result is stored into D100. *)

BIN_M (X0, DO, D100);

@ @ Corresponding MELSEC command

= BIN (Conversion from BCD 4-digit data to BIN data)
5.6.4 32-bit BCD —BIN conversion DBIN_M

\
The specified BCD 8-digit data (0 to 99999999) is converted into BIN 32-bit data.

B Function definition ~ DBIN_M (BOOL EN, ANY32 S1, ANY32 D);

Argument Name IN/OUT Description
Execution condition (Function is executed only when the
EN IN result is TRUE)
S IN Data to be converted (BCD 8-digit data)
D ouT Conversion result (BIN 32-bit data)
Return Value Description
BOOL Execution condition

@ Example of use
(* When execution condition X0 turns ON, the BCD data stored in dwData1is *)
(* converted into BIN, and the result is stored into Result. *)
DBIN_M (X0, dwData1, Result);

m @ Corresponding MELSEC command

* DBIN (Conversion from BCD 8-digit data to BIN data)

For the usable data type, refer to "3.2.2
About ANY type".

5 MELSEC FUNCTIONS

5.6.5 Floating-point—BIN conversion INT_E_MD

TN

The specified real number data is converted into BIN 16-bit data.
B Function definition BOOL INT_E_MD (BOOL EN, REAL S1, ANY16 D);

Argument Name INJOUT Description
Execution condition (Function is executed only when the
EN IN result is TRUE)
S1 IN Data to be converted (real number data)
D ouT Conversion result (BIN 16-bit data)

Remarks: The real number data specified in argument "S1" can be specified within the
range -32768 to 32767.
The data after conversion is the value obtained by rounding off the real
number in the first decimal place.

Return Value Description
BOOL Execution condition

@ Example of use

(* When execution condition X0 turns ON, the real number data in RealData1 is *)

(* converted into BIN 16-bit data, and the result is stored into DO. *)
INT_E_MD (X0, RealData1, DO);

L1

@ Corresponding MELSEC command
* INT (Conversion from floating decimal point data to BIN16-bit data (Single
precision))

5.6.6 32-bit floating-point—BIN conversion ~ DINT_E_MD

TN

The specified real number data is converted into BIN 32-bit data.

B Function definition

BOOL DINT_E_MD (BOOL EN, REAL S1, ANY32 D);

Argument Name INJOUT Description
Execution condition (Function is executed only when the
EN IN result is TRUE)
S IN Data to be converted (real number data)
D ouT Conversion result (BIN 32-bit data)

Remarks: The real number data specified in argument "S1" can be specified within the
range -2147483648 to 2147483647.
The data after conversion is the value obtained by rounding off the real
number in the first decimal place.

Return Value Description

BOOL Execution condition

@ Example of use
(* When execution condition X0 turns ON, real number data E2.6 is converted *)
(* into BIN 32-bit data, and the result is stored into Result. *)
DINT_E_MD (X0, E2.6, Result);

@ Corresponding MELSEC command
- DINT (Conversion from floating decimal point data to BIN32-bit data (Single
precision))

For the usable data type, refer to "3.2.2
About ANY type".

5-25

5 MELSEC FUNCTIONS

5.6.7 BIN—floating-point conversion FLT_M

TN

The specified BIN 16-bit data is converted into real number data.
B Function definition BOOL FLT_M (BOOL EN, ANY16 S1, REAL D);

Argument Name INJOUT Description
Execution condition (Function is executed only when the
EN IN result is TRUE)
S IN Data to be converted (BIN 16-bit data)
D ouT Conversion result (real number data)
Return Value Description
BOOL Execution condition
@ Example of use
(*When execution condition X0 turns ON, the BIN 16-bit data in D100 is *)
(* converted into real number data, and the result is stored into Result. *)

FLT_M (X0, D100, Result);

@ @ Corresponding MELSEC command

- FLT (Conversion from BIN 16-bit data to floating decimal point (Single precision))

5.6.8 32-bit BIN—floating-point conversion DFLT_M
\

The specified BIN 32-bit data is converted into real number data.
B Function definition = BOOL DFLT_M (BOOL EN, ANY32 S1, REAL D);

Argument Name IN/OUT Description
Execution condition (Function is executed only when the
EN IN result is TRUE)
S IN Data to be converted (BIN 32-bit data)
D ouT Conversion result (real number data)
Return Value Description
BOOL Execution condition

@ Example of use
(* When execution condition X0 turns ON, the BIN 32-bit data in dwData1 is *)
(* converted into real number data, and the result is stored into Result. *)
DFLT_M (X0, dwData1, RealResult);

m @ Corresponding MELSEC command

* DFLT (Conversion from BIN 32-bit data to floating decimal point (Single precision)
For the usable data type, refer to "3.2.2
About ANY type".

5 MELSEC FUNCTIONS

5.6.9 16-bit BIN—32-bit BIN conversion DBL_M

TN

The specified BIN 16-bit data is converted into signed BIN 32-bit data.
B Function definition BOOL DBL_M (BOOL EN, ANY16 S1, ANY32 D);

Argument Name INJOUT Description
Execution condition (Function is executed only when the
EN IN result is TRUE)
S IN Data to be converted (BIN 16-bit data)
D ouT Conversion result (BIN 32-bit data)
Return Value Description
BOOL Execution condition
@ Example of use
(* When execution condition X0 turns ON, the BIN 16-bit data in DO is *)
(* converted into signed BIN 32-bit data, and the result is stored into Result. *)

DBL_M (X0, DO, Result);

L1

@ Corresponding MELSEC command
= DBL (Conversion from BIN 16-bit to BIN 32-bit data)

5.6.10 32-bit BIN— 16-bit BIN conversion = WORD_M

TN

The specified BIN 32-bit data is converted into signed BIN 16-bit data.
BOOL WORD_M (BOOL EN, ANY32 S1, ANY16 D);

H Function definition

Argument Name IN/JOUT Description
Execution condition (Function is executed only when the
EN IN result is TRUE)
S IN Data to be converted (BIN 32-bit data)
D ouT Conversion result (BIN 16-bit data)
Return Value Description
BOOL Execution condition

@ Example of use
(* When execution condition X0 turns ON, the BIN 32-bit data stored in dwData1 *)
(* is converted into signed BIN 16-bit data, and the result is stored into DO. *)
WORD_M (X0, dwData1, DO0);

@ Corresponding MELSEC command
* WORD (Conversion from BIN 32-bit to BIN 16-bit data)

For the usable data type, refer to "3.2.2
About ANY type".

5 MELSEC FUNCTIONS

5.6.11 BIN—gray code conversion GRY_M

TN

The specified BIN 16-bit data is converted into gray code 16-bit data.
BOOL GRY_M (BOOL EN, ANY16 S1, ANY16 D);

B Function definition

Argument Name INJOUT Description
Execution condition (Function is executed only when the
EN IN result is TRUE)
S IN Data to be converted (BIN 16-bit data)
D ouT Conversion result (gray code 16-bit data)
Return Value Description
BOOL Execution condition
@ Example of use
(* When execution condition X0 turns ON, the BIN 16-bit data in DO is *)
(* converted into gray code 16-bit data, and the result is stored into D100. *)

GRY_M (X0, DO, D100);

L1

@ Corresponding MELSEC command
* GRY (Conversion from BIN 16-bit data to Gray code)

5.6.12 32-bit BIN—gray code conversion DGRY_M

TN

The specified BIN 32-bit data is converted into gray code 32-bit data.
BOOL DGRY_M (BOOL EN, ANY32 S1, ANY32 D);

B Function definition

Argument Name INJOUT Description
Execution condition (Function is executed only when the
EN IN result is TRUE)
S IN Data to be converted (BIN 32-bit data)
D ouT Conversion result (gray code 32-bit data)
Return Value Description
BOOL Execution condition

@ Example of use
(* When execution condition X0 turns ON, the BIN 32-bit data in dwData1 is *)
(* converted into gray code 32-bit data, and the result is stored into Result. *)
DGRY_M (X0, dwData1 Result);

@ Corresponding MELSEC command
- DGRY (Conversion from BIN 32-bit data to Gray code)

For the usable data type, refer to "3.2.2
About ANY type".

5 MELSEC FUNCTIONS

5.6.13 Gray code—BIN conversion GBIN_M

\
The specified gray code 16-bit data is converted into BIN 16-bit data.

B Function definiton BOOL GBIN_M (BOOL EN, ANY16 S1, ANY16 D);

Argument Name INJOUT Description
Execution condition (Function is executed only when the
EN IN result is TRUE)
S IN Data to be converted (gray code 16-bit data)
D ouT Conversion result (BIN 16-bit data)
Return Value Description
BOOL Execution condition

@ Example of use
(* When execution condition X0 turns ON, the gray code 16-bit data in D100 is *)
(* converted into BIN 16-bit data, and the result is stored into D200. *)
GBIN_M (X0, D100, D200);

@ @ Corresponding MELSEC command

- GBIN (Conversion of Gray code to BIN 16-bit data)

5.6.14 32-bit gray code—BIN conversion = DGBIN_M

\
The specified gray code 32-bit data is converted into BIN 32-bit data.

B Function definition =~ BOOL DGBIN_M (BOOL EN, ANY32 S1, ANY32 D);

Argument Name IN/JOUT Description
Execution condition (Function is executed only when the
EN IN result is TRUE)
S IN Data to be converted (gray code 32-bit data)
D ouT Conversion result (BIN 32-bit data)
Return Value Description
BOOL Execution condition

@ Example of use
(* When execution condition X0 turns ON, the gray code 32-bit data in dwData1 *)
(* is converted into BIN 32-bit data, and the result is stored into Result. *)
DGBIN_M (X0, dwData1, Result);

m @ Corresponding MELSEC command

* DGBIN (Conversion of Gray code to BIN 32-bit data)

For the usable data type, refer to "3.2.2
About ANY type".

5 MELSEC FUNCTIONS

5.6.15 2' complement of 16-bit BIN NEG_M

\
The sign of the specified BIN 16-bit data is inverted. (2's complement)

B Function definiton BOOL NEG_M (BOOL EN, ANY16 D);

Argument Name INJOUT Description

Execution condition (Function is executed only when the

EN IN result is TRUE)
Data whose sign will be inverted, sign inversion result

D IN/OUT .
(BIN 16-bit data)

Return Value Description
BOOL Execution condition

@ Example of use
(* When execution condition X0 turns ON, the sign of the BIN 16-bit data in DO *)
(* is inverted, and the result is stored into DO. *)
NEG_M (X0, DO);

@ @ Corresponding MELSEC command

- NEG (Complement of 2 of BIN 16-bit data (sign reversal))
5.6.16 2' complement of 32-bit BIN DNEG_M

\
The sign of the specified BIN 32-bit data is inverted. (2's complement)

B Function definition =~ BOOL DNEG_M (BOOL EN, ANY32 D);

Argument Name IN/OUT Description
Execution condition (Function is executed only when the
EN IN result is TRUE)
Data whose sign will be inverted, sign inversion result
D IN/OUT (BIN 32-bit data)
Return Value Description
BOOL Execution condition

@ Example of use
(* When execution condition X0 turns ON, the sign of the BIN 32-bit data in *)
(* Result is inverted, and the result is stored into Result. *)
DNEG_M (X0, Result);

@ @ Corresponding MELSEC command

* DNEG (Complement of 2 of BIN 32-bit data (sign reversal))
For the usable data type, refer to "3.2.2
About ANY type".

5 MELSEC FUNCTIONS

5.6.17 2' complement of floating-point ENEG_M

TN

The sign of the specified real number data is inverted. (2's complement)

B Function definition

BOOL ENEG_M (BOOL EN, REAL D);

Argument Name INJOUT Description

Execution condition (Function is executed only when the

EN IN result is TRUE)
Data whose sign will be inverted, sign inversion result

D IN/OUT
(real number data)

Return Value Description
BOOL Execution condition

@ Example of use
(* When execution condition X0 turns ON, the sign of the real number data in *)
(* Result is inverted, and the result is stored into Result. *)
ENEG_M (X0, Result);

L1

@ Corresponding MELSEC command
- ENEG (Floating-point sign inversion (Single precision))

5.6.18 Block BIN—BCD conversion = BKBCD_M

TN

n points of BIN 16-bit data (0 to 9999), starting at the specified device, is converted into BCD 4-digit data.

H Function definition

BOOL BKBCD_M (BOOL EN, ANY16 S1, ANY16 n, ANY16 D);

Argument Name IN/OUT Description
Execution condition (Function is executed only when the
EN IN result is TRUE)
S IN Data to be converted (BIN 16-bit data)
n IN Number of converted data
D ouT Conversion result (BCD 4-digit data)
Return Value Description
BOOL Execution condition

@ Example of use
(* When execution condition X0 turns ON, the BIN 16-bit data of the number *)
(* of points stored in WO, starting at DO, is converted into BCD, and the resultis *)
(* stored into D100 and later. *)
BKBCD_M (X0, DO, W0, D100);

@ Corresponding MELSEC command
- BKBCD (Conversion from block BIN 16-bit data to BCD 4-digit data)

For the usable data type, refer to "3.2.2
About ANY type".

5 MELSEC FUNCTIONS

5.6.19 Block BCD—BIN conversion

BKBIN_M

TN

n points of BCD 4-digit data (0 to 9999), starting at the specified device, is converted into BIN 16-bit data.
BOOL BKBIN_M (BOOL EN, ANY16 S1, ANY16 n, ANY16 D);

W Function definition

Argument Name INJOUT Description
Execution condition (Function is executed only when the
EN IN result is TRUE)
S IN Data to be converted (BCD 4-digit data)
n IN Number of converted data
D ouT Conversion result (BIN 16-bit data)
Return Value Description
BOOL Execution condition

@ Example of use

(* When execution condition X0 turns ON, the BCD data of the number of points *)
(* stored in WO, starting at DO, is converted into BIN, and the result is stored into *)

(* D100 and later.

%)

BKBIN_M (X0, DO, WO, D100);

@ Corresponding MELSEC command
- BKBIN (Conversion from block BCD 4-digit data to block BIN 16-bit data)

For the usable data type, refer to "3.2.2
About ANY type".

5 MELSEC FUNCTIONS

5.7 Data Transfer

5.7.1 16-bit data NOT transfer CML_M

TN

The specified BIN 16-bit data are inverted bit by bit.

B Function definition

BOOL CML_M (BOOL EN, ANY16 S1, ANY16 D);

Argument Name IN/OUT Description
EN IN Execution condition (Function is executed only when the
result is TRUE)
S1 IN Data whose bits will be inverted (BIN 16-bit data)
D ouT Inversion result transfer destination (BIN 16-bit data)
Return Value Description
BOOL Execution condition

@ Example of use
(* When execution condition X0 turns ON, the data of MO to M7 are inverted, *)
(* and the result is transferred to DO.)
CML_M (X0, K2M0, DO);

L1

@ Corresponding MELSEC command
= CML (16-bit NOT transfer)

5.7.2 32-bit data NOT transfer DCML_M

TN

The specified BIN 32-bit data are inverted bit by bit.

W Function definition

BOOL DCML_M (BOOL EN, ANY32 S1, ANY32 D);

Argument Name INJOUT Description
EN IN Execution condition (Function is executed only when the
result is TRUE)
S1 IN Data whose bits will be inverted (BIN 32-bit data)
D ouT Inversion result transfer destination (BIN 32-bit data)
Return Value Description
BOOL Execution condition

@ Example of use
(* When execution condition X0 turns ON, the data in dwData1 are inverted *)
(* bit by bit, and the result is transferred to Result. *)
DCML_M (X0, dwData1, Result);

@ Corresponding MELSEC command
* DCML (32-bit NOT transfer)

For the usable data type, refer to "3.2.2
About ANY type".

5 MELSEC FUNCTIONS

5.7.3 Block transfer

BMOV_M

TN

n points of BIN 16-bit data, starting at the specified device, are batch-transferred.
BOOL BMOV_M (BOOL EN, ANY16 S1, ANY16 n, ANY16 D);

M Function definition

Argument Name IN/OUT Description
EN IN Execution condition (Function is executed only when
the result is TRUE)
S1 IN Data to be transferred (BIN 16-bit data)
n IN Number of data to be transferred (BIN 16-bit data)
D ouT Transfer destination (BIN 16-bit data)
Return Value Description
BOOL Execution condition

@ Example of use
(* When execution condition X0 turns ON, the 16-bit data of the number of *)
(* points stored in WO, starting at the device specified in DO, are transferred to *)
(* the number of points stored in WO, starting at D100. *)
BMOV_M (X0, DO, W0, D100);

L1

5.7.4 Same data block transfer

@ Corresponding MELSEC command
- BMOV (Block 16-bit transfer)

FMOV_M

\
The 16-bit data of the specified device are transferred to the number of points, starting at the specified
device.

M Function definition

BOOL FMOV_M (BOOL EN, ANY16 S1, ANY16 n, ANY16 D);

Argument Name INJOUT Description
EN IN Execution condition (Function is executed only when
the result is TRUE)
S1 IN Data to be transferred (BIN 16-bit data)
n IN Number of data to be transferred (BIN 16-bit data)
D ouT Transfer destination (BIN 16-bit data)
Return Value Description
BOOL Execution condition

@ Example of use

(* When execution condition X0 turns ON, the 16-bit data of DO are transferred *)
(* to the number of points stored in WO, starting at D100. *)
FMOV_M (X0, DO, W0, D100);

@ Corresponding MELSEC command
- FMOV (Block 16-bit data transfer)

For the usable data type, refer to "3.2.2
About ANY type".

5 MELSEC FUNCTIONS

5.7.5 16-bit data exchange = XCH_M

TN

The specified two BIN 16-bit data are exchanged.
B Function definition =~ BOOL XCH_M (BOOL EN, ANY16 D1, ANY16 D2);

Argument Name INJOUT Description
EN IN Execution condition (Function is executed only when the
result is TRUE)
S1 IN/OUT Data to be exchanged, exchange result (BIN 16-bit data)
D2 IN/OUT Data to be exchanged, exchange result (BIN 16-bit data)
Return Value Description
BOOL Execution condition

@ Example of use
(* When execution condition X0 turns ON, the 16-bit data in D100 and D200 *)
(* are exchanged. *)
XCH_M (X0, D100, D200);

@ @ Corresponding MELSEC command

- XCH (16-bit data exchange)

5.7.6 32-bit data exchange = DXCH_M

TN

The specified two BIN 32-bit data are exchanged.
B Function definition = BOOL DXCH_M (BOOL EN, ANY32 D1, ANY32 D2);

Argument Name INJOUT Description
EN IN Execution condition (Function is executed only when the
result is TRUE)
D1 IN/OUT Data to be exchanged, exchange result (BIN 32-bit data)
D2 IN/OUT Data to be exchanged, exchange result (BIN 32-bit data)
Return Value Description
BOOL Execution condition

@ Example of use
(* When execution condition X0 turns ON, the 32-bit data in dwData1 and *)
(* dwData2 are exchanged.)
DXCH_M (X0, dwData1, dwData2);

m @ Corresponding MELSEC command

- DXCH (32-bit data exchange)

For the usable data type, refer to "3.2.2
About ANY type".

5 MELSEC FUNCTIONS

5.7.7 Block data exchange = BXCH_M

TN

n points of BIN 16-bit data, starting at the specified devices, are exchanged.
B Function definiton = BOOL BXCH_M (BOOL EN, ANY16 n, ANY16 D1, ANY16 D2);

Argument Name INJOUT Description

EN IN Execution condition (Function is executed only when

the result is TRUE)
n IN Number of data to be exchanged (BIN 16-bit data)

Data to be exchanged, exchange result (BIN 16-bit

D1 IN/ OUT
data)
Data to be exchanged, exchange result (BIN 16-bit

D2 IN/ OUT
data)

Return Value Description
BOOL Execution condition

@ Example of use
(* When execution condition X0 turns ON, 3 points of 16-bit data, starting at
(* D100, and 3 points of 16-bit data, starting at D200, are exchanged. *)
BXCH_M (X0, K3, D100, D200);

@ @ Corresponding MELSEC command

- BXCH (Block 16-bit data exchange)

5.7.8 First/last byte exchange =~ SWAP_MD

TN

The first 8 bits and last 8 bits of the specified device are exchanged.
B Function definiton = BOOL SWAP_MD (BOOL EN, ANY16 D);

Argument Name INJOUT Description

Execution condition (Function is executed only when
the result is TRUE)

Data to be exchanged, exchange result (BIN 16-bit
data)

EN IN

D INJOUT

Return Value Description

BOOL Execution condition

@ Example of use

(* When execution condition X0 turns ON, the first 8 bits and last 8 bits of DO *)

(* are exchanged. *)
SWAP_MD (X0, DO);

m @ Corresponding MELSEC command

- SWAP (First/last byte exchange)

For the usable data type, refer to "3.2.2
About ANY type".

5 MELSEC FUNCTIONS

5.8 Program Execution Control

5.8.1 Interrupt disable DI_M

TN

If the interrupt factor of an interrupt program occurs, the execution of the interrupt program is disabled until
El_M is executed.

B Function definiton =~ BOOL DI_M (BOOL EN);

Argument Name IN/JOUT Description

Execution condition
EN IN (Only value TRUE indicating that the result is always

valid or normally ON device SM400 can be specified.)

Return Value Description
BOOL Execution condition (always TRUE)

@ Example of use

(* The execution of the interrupt program is disabled until until EI_M is executed. *)
DI_M (TRUE);

m @ Corresponding MELSEC command

= DI (Interrupt disable)

5.8.2 Interrupt enable EI_M

TN

The interrupt disable status during DI_M execution is reset, and the execution of the interrupt program of the
interrupt pointer number enabled by IMASK is enabled.

B Function definition = BOOL EI_M (BOOL EN);

Argument Name IN/OUT Description

Execution condition
EN IN (Only value TRUE indicating that the result is always
valid or normally ON device SM400 can be specified.)

Return Value Description
BOOL Execution condition (always TRUE)
@ Example of use
(* The interrupt disable status during DI_M execution is reset. *)
El_M (TRUE);

m @ Corresponding MELSEC command

* El (Interrupt enable)

5 MELSEC FUNCTIONS

5.9 1/0 Refresh

5.9.1 /O refresh

RFS_M

TN

n points of 1/0 devices, starting at the specified device, are refreshed.

B Function definition

BOOL RFS_M (BOOL EN, BOOL S1, ANY16 n);

| Argument Name IN/OUT Description
EN IN Execution condition (Function is executed only when
the result is TRUE)
S1 IN Devices to be refreshed (bit data)
n IN Number of data to be refreshed (BIN 16-bit data)
Return Value Description
BOOL Execution condition
@ Example of use
(* When execution condition X0 turns ON, 32 points of devices, starting at *)
(* X100, are refreshed. *)

RFS_M (MO, X100, H20);

@ Corresponding MELSEC command
» RFS (I/O refresh)

For the usable data type, refer to "3.2.2
About ANY type".

5 MELSEC FUNCTIONS

5.10 Logical Operation Commands

5.10.1 Logical product (2 devices) @ WAND_M

TN

The specified two BIN 16-bit data are ANDed bit by bit.

M Function definition

BOOL WAND_M (BOOL EN, ANY16 S1, ANY16 D);

| Argument Name IN/OUT Description

EN IN Execution condition (Function is executed only when the

result is TRUE)

S1 IN Data to AND (BIN 16-bit data)

D INJOUT Data to be ANDed, operation result (BIN 16-bit data)
Remarks: For bit devices, the bits greater than in the digit specification are processed

as "0 (zero)".
Return Value Description
BOOL Execution condition

@ Example of use
(* When execution condition X0 turns ON, the 16-bit data in DO and D10 are *)
(* ANDed bit by bit, and the result is stored into D10. *)
WAND_M (X0, DO, D10);

L1

@ Corresponding MELSEC command
- WAND (16-bit data logical product)

5.10.2 Logical product (3 devices) = WAND_3 M

TN

The specified two BIN 16-bit data are ANDed bit by bit.

B Function definition

BOOL WAND_3 M (BOOL EN, ANY16 S1, ANY16 S2, ANY16 D1);

Argument Name INJOUT Description
EN IN Execution condition (Function is executed only when the
result is TRUE)
S1 IN Data to be ANDed (BIN 16-bit data)
S2 IN Data to AND (BIN 16-bit data)
D1 ouT Operation result (BIN 16-bit data)

Remarks: For bit devices, the bits greater than in the digit specification are
processed as "0 (zero)".

Return Value Description

BOOL Execution condition

@ Example of use
(* When execution condition X0 turns ON, the 16-bit data in DO and D10 are *)
(* ANDed bit by bit, and the result is stored into D100. *)
WAND_3 M (X0, DO, D10, D100);

@ Corresponding MELSEC command
- WAND (16-bit data logical product)

For the usable data type, refer to "3.2.2
About ANY type".

5 MELSEC FUNCTIONS

5.10.3 32-bit data logical product (2 devices) DAND_M

TN

The specified two BIN 32-bit data are ANDed bit by bit.

H Function definition

BOOL DAND_M (BOOL EN, ANY32 S1, ANY32 D);

Argument Name INJOUT Description
EN IN Execution condition (Function is executed only when
the result is TRUE)
S1 IN Data to AND (BIN 32-bit data)
D IN/OUT Data to be ANDed, operation result (BIN 32-bit data)
Remarks: For bit devices, the bits greater than in the digit specification are processed
as "0 (zero)".
Return Value Description
BOOL Execution condition

@ Example of use
(* When execution condition X0 turns ON, the 24-bit data in dwData1 and *)
(* X30 to X47 are ANDed, and the result is stored into dwData1. *)
DAND_M (X0, K6X30, dwData1);

L1

@ Corresponding MELSEC command
- DAND (32-bit data logical product)

5.10.4 32-bit data logical product (3 devices) DAND 3 M

TN

The specified two BIN 32-bit data are ANDed bit by bit.

H Function definition

BOOL DAND_3_M (BOOL EN, ANY32 S1, ANY32 S2, ANY32 D);

Argument Name INJOUT Description
EN IN Execution condition (Function is executed only when
the result is TRUE)
S1 IN Data to be ANDed (BIN 32-bit data)
S2 IN Data to AND (BIN 32-bit data)
D ouT Operation result (BIN 32-bit data)

Remarks: For bit devices, the bits greater than in the digit specification are
processed as "0 (zero)".

Return Value Description
BOOL Execution condition

@ Example of use

(* When execution condition X0 turns ON, the 32-bit data in dwData1 and *)

(* dwData2 are ANDed, and the result is stored into Result. *)
DAND_3 M (X0, dwData1, dwData2, Result);

@ Corresponding MELSEC command
- DAND (32-bit data logical product)

For the usable data type, refer to "3.2.2
About ANY type".

5 MELSEC FUNCTIONS

5.10.5 Block data logical product BKAND_M

\
n points of 16-bit data, starting at the specified two devices, are ANDed bit by bit.

B Function definition =~ BOOL BKAND_M (BOOL EN, ANY16 S1, ANY16 S2, ANY16 n, ANY16 D);

Argument Name INJOUT Description

EN IN Execution condition (Function is executed only when
the result is TRUE)
S1 IN Data to be ANDed, operation result (BIN 16-bit data)
S2 IN Data to AND (BIN 16-bit data)
n IN Number of data to be processed (BIN 16-bit data)
D ouT Operation result (BIN 16-bit data)
Return Value Description
BOOL Execution condition

@ Example of use
(* When execution condition X0 turns ON, the data of the number of points *)
(* stored in DO, starting at D100, and the data of the number of points stored *)
(* in DO, starting at D200, are ANDed, and the result is stored into D1000 *)
(* and later. *)
BKAND_M (X0, D100, D200, DO, D1000);

@ @ Corresponding MELSEC command

- BKAND (Block logical product)

5.10.6 Logical sum (2 devices) @ WOR_M

TN

The specified two BIN 16-bit data are ORed bit by bit.
B Function definiton =~ BOOL WOR_M (BOOL EN, ANY16 S1, ANY16 D);

Argument Name INJOUT Description
EN IN Execution condition (Function is executed only when
the result is TRUE))
S1 IN Data to OR (BIN 16-bit data)
D IN/OUT Data to be ORed, operation result (BIN 16-bit data)

Remarks: For bit devices, the bits greater than in the digit specification are
processed as "0 (zero)".

Return Value Description

BOOL Execution condition

@ Example of use

(* When execution condition X0 turns ON, the data in D10 and D20 are ORed, *)

(* and the result is stored into D10. *)
WOR_M (X0, D10, D20);

m @ Corresponding MELSEC command

- WOR (16-bit data logical sum)

For the usable data type, refer to "3.2.2
About ANY type".

5 MELSEC FUNCTIONS

5.10.7 Logical sum (3 devicess) @ WOR_3 M

TN

The specified two BIN 16-bit data are ORed bit by bit.

M Function definition

BOOL WOR_3_M (BOOL EN, ANY16 S1, ANY16 S2, ANY16 D1);

Argument Name INJOUT Description
EN IN Execution condition (Function is executed only when
the result is TRUE)
S1 IN Data to be ORed (BIN 16-bit data)
S2 IN Data to OR (BIN 16-bit data)
D1 ouT Operation result (BIN 16-bit data)

Remarks: For bit devices, the bits greater than in the digit specification are
processed as "0 (zero)".

Return Value Description

BOOL Execution condition

@ Example of use
(* When execution condition X0 turns ON, the data in X10 to X1B and the data *)
(*in DO are ORed, and the result is output to Y10 - Y1B. *)
WOR_3_M (M0, K3X10, DO, K3Y10);

L1

@ Corresponding MELSEC command
- WOR (16-bit data logical sum)

5.10.8 32-bit data logical sum (2 devices) DOR_M

TN

The specified two BIN 32-bit data are ORed bit by bit.

B Function definition

BOOL DOR_M (BOOL EN, ANY32 S1, ANY32 D);

| Argument Name IN/OUT Description
EN IN Execution condition (Function is executed only when
the result is TRUE)
S1 IN Data to OR (BIN 32-bit data)
D INJOUT Data to be ORed, operation result (BIN 32-bit data)

Remarks: For bit devices, the bits greater than in the digit specification are
processed as "0 (zero)".

Return Value Description
BOOL Execution condition

@ Example of use

(* When execution condition X0 turns ON, the data in dwData1 and Result are *)

(* ORed, and the result is output to Result. *)
DOR _M (X0, dwData1, Result);

@ Corresponding MELSEC command
- DOR (32-bit data logical sum)

For the usable data type, refer to "3.2.2
About ANY type".

5 MELSEC FUNCTIONS

5.10.9 32-bit data logical sum (3 devices) @DOR_3 M

TN

The specified two BIN 32-bit data are ORed bit by bit.

H Function definition

BOOL DOR_3_M (BOOL EN, ANY32 S1, ANY32 S2, ANY32 D);

Argument Name INJOUT Description
EN N Execution.condition (Function is executed only when
the result is TRUE)
S1 IN Data to be ORed (BIN 32-bit data)
S2 IN Data to OR (BIN 32-bit data)
D ouT Operation result (BIN 32-bit data)

Remarks: For bit devices, the bits greater than in the digit specification are
processed as "0 (zero)".

Return Value Description

BOOL Execution condition

@ Example of use
(* When execution condition X0 turns ON, the 32-bit data in dwData1 and the *)
(* 32-bit data in X20 to X3F are ORed, and the result is output to Result. *)
DOR_3 M (X0, dwData1, K8X20, Result);

L1

@ Corresponding MELSEC command
- DOR (32-bit data logical sum)

5.10.10 Block data logical sum BKOR_M

TN

n points of 16-bit data, starting at the specified two devices, are ORed bit by bit.

H Function definition

BOOL BKOR_M (BOOL EN, ANY16 S1, ANY16 S2, ANY16 n, ANY16 D);

Argument Name IN/OUT Description
EN N Execution.condition (Function is executed only when
the result is TRUE)
S1 IN Data to be ORed (BIN 16-bit data)
S2 IN Data to OR (BIN 16-bit data)
n IN Number of data to be processed (BIN 16-bit data)
D ouT Operation result (BIN 16-bit data)
Return Value Description
BOOL Execution condition

@ Example of use
(* When execution condition X0 turns ON, the data of the number of points *)
(* stored in DO, starting at D10, and the data of the number of points stored in *)
(* DO, starting at D20, are ORed, and the result is stored into D100 and later. *)
BKOR_M (X0, D10, D20, DO, D100);

@ Corresponding MELSEC command
- BKOR (Block logical sum)

For the usable data type, refer to "3.2.2
About ANY type".

5 MELSEC FUNCTIONS

5.10.11 Exclusive OR (2 devices) @ WXOR_M

TN

The specified two BIN 16-bit data are EXCLUSIVE ORed bit by bit.
B Function definiton = BOOL WXOR_M (BOOL EN, ANY16 S1, ANY16 D);

Argument Name INJOUT Description
EN IN Execution condition (Function is executed only when
the result is TRUE)
S1 IN Data to EXCLUSIVE OR (BIN 16-bit data)
Data to be EXCLUSIVE ORed, operation result (BIN
D IN/OUT .
16-bit data)

Remarks: For bit devices, the bits greater than in the digit specification are
processed as "0 (zero)".

Return Value Description

BOOL Execution condition

@ Example of use
(* When execution condition X0 turns ON, the 16-bit data in D10 and D20 are *)
(* EXCLUSIVE ORed, and the result is stored into D20. *)
WXOR_M (X0, D10, D20);

@ @ Corresponding MELSEC command

- WXOR (16-bit data exclusive OR)

5.10.12 Exclusive OR (3 devices) @ WXOR_3 M

TN

The specified two BIN 16-bit data are EXCLUSIVE ORed bit by bit.
B Function definition = BOOL WXOR_3_M (BOOL EN, ANY16 S1, ANY16 S2, ANY16 D1);

Argument Name IN/JOUT Description
EN IN Execution.condition (Function is executed only when
the result is TRUE)
S1 IN Data to be EXCLUSIVE ORed (BIN 16-bit data)
S2 IN Data to EXCLUSIVE OR (BIN 16-bit data)
D ouT Operation result (BIN 16-bit data)

Remarks: For bit devices, the bits greater than in the digit specification are
processed as "0 (zero)".

Return Value Description

BOOL Execution condition

@ Example of use
(* When execution condition X0 turns ON, the 16-bit data in D10 and D20 are *)
(* EXCLUSIVE ORed, and the result is stored into D100. *)
WXOR_3_M (X0, D10, D20, D100);

m @ Corresponding MELSEC command

- WXOR (16-bit data exclusive OR)

For the usable data type, refer to "3.2.2
About ANY type".

5 MELSEC FUNCTIONS

5.10.13 32-bit data exclusive OR (2 devices) @ DXOR_M

TN

The specified two BIN 32-bit data are EXCLUSIVE ORed bit by bit.

M Function definition

BOOL DXOR_M (BOOL EN, ANY32 S1, ANY32 D);

Argument Name IN/OUT Description
EN N Execution condition (Function is executed only when
the result is TRUE)
S1 IN Data to EXCLUSIVE OR (BIN 32-bit data)
Data to be EXCLUSIVE ORed, operation result (BIN
D IN/OUT .
32-bit data)

Remarks: For bit devices, the bits greater than in the digit specification are
processed as "0 (zero)".

Return Value Description

BOOL Execution condition

@ Example of use
(* When execution condition X0 turns ON, the 32-bit data in dwData1 and *)
(* Result are EXCLUSIVE ORed, and the result is stored into Result. *)
DXOR_M (X0, dwData1, Result);

L1

@ Corresponding MELSEC command
- DXOR (32-bit data exclusive OR)

5.10.14 32-bit data exclusive OR (3 devices) ¥ DXOR_3 M

TN

The specified two BIN 32-bit data are EXCLUSIVE ORed bit by bit.

W Function definition

BOOL DXOR_3_M (BOOL EN, ANY32 S1, ANY32 S2, ANY32 D);

Argument Name INJOUT Description
EN N Execution.condition (Function is executed only when
the result is TRUE)
S1 IN Data to be EXCLUSIVE ORed (BIN 32-bit data)
S2 IN Data to EXCLUSIVE OR (BIN 32-bit data)
D ouT Operation result (BIN 32-bit data)

Remarks: For bit devices, the bits greater than in the digit specification are
processed as "0 (zero)".

Return Value Description

BOOL Execution condition

@ Example of use
(* When execution condition X0 turns ON, the 32-bit data in dwData1 and *)
(* dwData2 are EXCLUSIVE ORed, and the result is stored into Result. *)
DXOR_3_M (X0, dwData1, dwData2, Result);

@ Corresponding MELSEC command
- DXOR (32-bit data exclusive OR)

For the usable data type, refer to "3.2.2
About ANY type".

5 MELSEC FUNCTIONS

5.10.15 Block data exclusive OR

BKXOR_M

TN

n points of 16-bit data, starting at the specified two devices, are EXCLUSIVE ORed bit by bit.
BOOL BKXOR_M (BOOL EN, ANY16 S1, ANY16 S2, ANY16 n, ANY16 D);

H Function definition

Argument Name INJOUT Description

Execution condition (Function is executed only when

EN IN the result is TRUE)

S1 IN Data to be EXCLUSIVE ORed, operation result (BIN
16-bit data)

S2 IN Data to EXCLUSIVE OR (BIN 16-bit data)

n IN Number of data to be processed (BIN 16-bit data)

D ouT Operation result (BIN 16-bit data)

Return Value

Description

BOOL

Execution condition

@ Example of use

L1

M Function definition

(* When execution condition X0 turns ON, the data of the number of points *)
(* stored in DO, starting at D10, and the data of the number of points stored *)
(* in DO, starting at D20, are EXCLUSIVE ORed, and the result is stored into *)
(* D100 and later. *)
BKXOR_M (X0, D10, D20, DO, D100);
@ Corresponding MELSEC command
- BKXOR (Block exclusive OR)
5.10.16 NOT exclusive OR (2 devices) @ WXNR_M
\
The specified two BIN 16-bit data are NOT EXCLUSIVE ORed bit by bit.
BOOL WXNR_M (BOOL EN, ANY32 S1, ANY32 S2, ANY32 D);
Argument Name IN/OUT Description
EN N Execution condition (Function is executed only when
the result is TRUE)
S1 IN Data to NOT EXCLUSIVE OR (BIN 16-bit data)
D INOUT Data to be NOT EXCLUSIVE ORed, operation result
(BIN 16-bit data)
Remarks: For bit devices, the bits greater than in the digit specification are
processed as "0 (zero)".
Return Value Description
BOOL Execution condition
@ Example of use
(* When execution condition X0 turns ON, the 16-bit data in X20 to X2F and *)
(* the 16-bit data in D10 are NOT EXCLUSIVE ORed, and the result is stored *)
(* into D10. *)

WXNR_M (X0, K4X20, D10);

@ Corresponding MELSEC command
- WXNR (16-bit data NOT exclusive OR)

For the usable data type, refer to "3.2.2
About ANY type".

5 MELSEC FUNCTIONS

5.10.17 NOT exclusive OR (3 devices) @ WXNR_3 M

TN

The specified two BIN 16-bit data are NOT EXCLUSIVE ORed bit by bit.

H Function definition

BOOL WXNR_3_M (BOOL EN, ANY16 S1, ANY16 S2, ANY16 D);

Argument Name INJOUT Description

EN N Execution.condition (Function is executed only when
the result is TRUE)
S1 IN Data to be NOT EXCLUSIVE ORed (BIN 16-bit data)
S2 IN Data to NOT EXCLUSIVE OR (BIN 16-bit data)
D ouT Operation result (BIN 16-bit data)
Remarks: The same device can be specified in arguments "S1" and "D", and in "S2"
and "D".
Return Value Description
BOOL Execution condition

@ Example of use
(* When execution condition X0 turns ON, the 16-bit data in X20 to X2F and *)
(* the 16-bit data in DO are NOT EXCLUSIVE ORed, and the result is stored *)
(* into D100. *)
WXNR_3_M (X0, K4X20, DO, D100);

L1

@ Corresponding MELSEC command
- WXNR (16-bit data NOT exclusive OR)

5.10.18 32-bit data NOT exclusive OR (2 devices) n DXNR_M

TN

The specified two BIN 32-bit data are NOT EXCLUSIVE ORed bit by bit.

B Function definition

BOOL DXNR_M (BOOL EN, ANY32 S1, ANY32 D);

Argument Name INJOUT Description

Execution condition (Function is executed only when

the result is TRUE)

S1 IN Data to NOT EXCLUSIVE OR (BIN 32-bit data)

Data to be NOT EXCLUSIVE ORed, operation result

(BIN 32-bit data)

Remarks: For bit devices, the bits greater than in the digit specification are
processed as "0 (zero)".

EN IN

D IN/OUT

Return Value Description

BOOL Execution condition

@ Example of use
(* When execution condition X0 turns ON, the 32-bit data in dwData1 and the *)
(* 32-bit data in Result are NOT EXCLUSIVE ORed, and the result is stored *)
(* into Result. *)
DXNR_M (X0, dwData1, Result);

@ Corresponding MELSEC command

- DXNR (32-bit data NOT exclusive OR)
For the usable data type, refer to "3.2.2
About ANY type".

5 MELSEC FUNCTIONS

5.10.19 32-bit data NOT exclusive OR (3 devices) DXNR_3 M
\

The specified two BIN 32-bit data are NOT EXCLUSIVE ORed bit by bit.
B Function definiton =~ BOOL DXNR_3_M (BOOL EN, ANY32 S1, ANY32 S2, ANY32 D);

Argument Name INJOUT Description
EN N Execution.condition (Function is executed only when
the result is TRUE)
S1 IN Data to be NOT EXCLUSIVE ORed (BIN 32-bit data)
S2 IN Data to NOT EXCLUSIVE OR (BIN 32-bit data)
D ouT Operation result (BIN 32-bit data)

Remarks: For bit devices, the bits greater than in the digit specification are
processed as "0 (zero)".

Return Value Description

BOOL Execution condition

@ Example of use
(* When execution condition X0 turns ON, the 32-bit data in dwData1 and the
(* 32-bit data in dwData2 are NOT EXCLUSIVE ORed, and the result is stored
(* into Result.
DXNR_3_M (X0, dwData1, dwData2, Result);

*)
)

)

@ @ Corresponding MELSEC command

- DXNR (32-bit data NOT exclusive OR)
5.10.20 Block data NOT exclusive OR BKXNR_M

TN

n points of 16-bit data, starting at the specified two devices, are NOT EXCLUSIVE ORed bit by bit.
B Function definiton =~ BOOL BKXNR_M (BOOL EN, ANY16 S1, ANY16 S2, ANY16 n, ANY16 D);

| Argument Name IN/JOUT Description

EN IN Execution.condition (Function is executed only when
the result is TRUE)
S1 IN Data to be NOT EXCLUSIVE ORed (BIN 16-bit data)
S2 IN Data to NOT EXCLUSIVE OR (BIN 16-bit data)
n IN Number of data to be processed (BIN 16-bit data)
ouT Operation result (BIN 16-bit data)
Return Value Description
BOOL Execution condition

@ Example of use
(* When execution condition X0 turns ON, the data of the number of points
(* stored in DO, starting at D100, and the data of the number of points stored
(* in DO, starting at W100, are NOT EXCLUSIVE ORed, and the result is
(* stored into D200 and later.
BKXNR_M (X0, D100, W100, DO, D200);

*
~— — — ~—

@ @ Corresponding MELSEC command

- BKXNR (Block NOT exclusive OR)

For the usable data type, refer to "3.2.2
About ANY type".

5 MELSEC FUNCTIONS

5.11 Rotation

5.11.1 Right rotation (carry flag not included) ROR_M

The specified BIN 16-bit data are rotated n bits to the right, without the carry flag being included.

B Function definition

TN

BOOL ROR_M (BOOL EN, ANY16 n, ANY16 D);

| Argument Name IN/OUT Description
EN IN Execution.condition (Function is executed only when
the result is TRUE)
n IN Number of rotations (0 to 15) (BIN 16-bit data)
D IN/OUT Data to be rotated, rotation result (BIN 16-bit data)

Remarks: When

a bit device is specified in "D", the data in the specified number of
digits are rotated.

Return Value

Description

BOOL

Execution condition

@ Example of use

(* When execution condition X0 turns ON, the data in DO are rotated 3 bits to
(* the right, without the carry flag being included.

ROR_M (X0, K3, DO);

L1

@ Corresponding MELSEC command
- ROR (Right rotation of 16-bit data)

5.11.2 Right rotation (carry flag included) @ RCR_M

The specified BIN 16-bit data are rotated n bits to the right, with the carry flag being included.

B Function definition

TN

BOOL RCR_M (BOOL EN, ANY16 n, ANY16 D);

| Argument Name IN/JOUT Description
EN IN Execution.condition (Function is executed only when
the result is TRUE)
n IN Number of rotations (0 to 15) (BIN 16-bit data)
D IN/OUT Data to be rotated, rotation result (BIN 16-bit data)

Remarks: When

a bit device is specified in "D", the data in the specified number of
digits are rotated.

Return Value

Description

BOOL

Execution condition

@ Example of use

(* When execution condition X0 turns ON, the data in DO are rotated 3 bits to

(* the right, with the carry flag being included.
RCR_M (X0, K3, D0);

@ Corresponding MELSEC command
» RCR (Right rotation of 16-bit data)

For the usable data type, refer to "3.2.2
About ANY type".

5 MELSEC FUNCTIONS

5.11.3 Left rotation (carry flag not included) ROL_M

\
The specified BIN 16-bit data are rotated n bits to the left, without the carry flag being included.

B Function definition =~ BOOL ROL_M (BOOL EN, ANY16 n, ANY16 D);

Argument Name INJOUT Description

Execution condition (Function is executed only when

EN IN the result is TRUE)
n IN Number of rotations (0 to 15) (BIN 16-bit data)
D INJOUT Data to be rotated, rotation result (BIN 16-bit data)

Remarks: When a bit device is specified in "D", the data in the specified number of
digits are rotated.

Return Value Description
BOOL Execution condition

@ Example of use

(* When execution condition X0 turns ON, the data in DO are rotated 3 bits to *)

(* the left, without the carry flag being included. *)
ROL_M (X0, K3, D0);

@ @ Corresponding MELSEC command

- ROL (Left rotation of 16-bit data)

5.11.4 Left rotation (carry flag included) RCL_M

\
The specified BIN 16-bit data are rotated n bits to the left, with the carry flag being included.

B Function definition =~ BOOL RCL_M (BOOL EN, ANY16 n, ANY16 D);

Argument Name INJOUT Description
EN N Execution.condition (Function is executed only when
the result is TRUE)
n IN Number of rotations (0 to 15) (BIN 16-bit data)
D IN/OUT Data to be rotated, rotation result (BIN 16-bit data)

Remarks: When a bit device is specified in "D", the data in the specified number of
digits are rotated.

Return Value Description
BOOL Execution condition

@ Example of use

(* When execution condition X0 turns ON, the data in DO are rotated 3 bits to *)

(* the left, with the carry flag being included. *)
RCL_M (X0, K3, DO0);

m @ Corresponding MELSEC command

- RCL (Left rotation of 16-bit data)

For the usable data type, refer to "3.2.2
About ANY type".

5 MELSEC FUNCTIONS

5.11.5 32-bit data right rotation (carry flag not included) DROR_M

TN

The specified BIN 32-bit data are rotated n bits to the right, without the carry flag being included.

M Function definition

BOOL DROR_M (BOOL EN, ANY16 n, ANY32 D);

Argument Name INJOUT Description
EN N Execution.condition (Function is executed only when
the result is TRUE)
n IN Number of rotations (0 to 31) (BIN 16-bit data)
D INJOUT Data to be rotated, rotation result (BIN 32-bit data)

Remarks: When a bit device is specified in "D", the data in the specified number of
digits are rotated.

Return Value Description
BOOL Execution condition
@ Example of use
(* When execution condition X0 turns ON, the 32-bit data in dwData1 are *)
(* rotated to the right by the number of bits stored in DO, without the carry flag *)
(* being included. *)

DROR_M (X0, DO, dwData1);

L1

@ Corresponding MELSEC command
- DROR (Right rotation of 32-bit data)

5.11.6 32-bit data right rotation (carry flag included) DRCR_M

TN

The specified BIN 32-bit data are rotated n bits to the right, with the carry flag being included.

M Function definition

BOOL DRCR_M (BOOL EN, ANY16 n, ANY32 D);

Argument Name INJOUT Description
EN N Execution.condition (Function is executed only when
the result is TRUE)
n IN Number of rotations (0 to 31) (BIN 16-bit data)
D IN/OUT Data to be rotated, rotation result (BIN 32-bit data)

Remarks: When a bit device is specified in "D", the data in the specified number of
digits are rotated.

Return Value Description
BOOL Execution condition
@ Example of use
(* When execution condition X0 turns ON, the 32-bit data in dwData1 are *)
(* rotated to the right by the number of bits stored in DO, with the carry flag *)
(* being included. *)

DRCR_M (X0, DO, dwData1);

@ Corresponding MELSEC command
- DRCR (Right rotation of 32-bit data)

For the usable data type, refer to "3.2.2
About ANY type".

5 MELSEC FUNCTIONS

5.11.7 32-bit data left rotation (carry flag not included) DROL_M

TN

The specified BIN 32-bit data are rotated n bits to the left, without the carry flag being included.

M Function definition

BOOL DROL_M (BOOL EN, ANY16 n, ANY32 D);

Argument Name INJOUT Description

Execution condition (Function is executed only when

EN IN the result is TRUE)
n IN Number of rotations (0 to 31) (BIN 16-bit data)
D INJOUT Data to be rotated, rotation result (BIN 32-bit data)

Remarks: When a bit device is specified in "D", the data in the specified number of
digits are rotated.

Return Value Description
BOOL Execution condition
@ Example of use
(* When execution condition X0 turns ON, the 32-bit data in dwData1 are *)
(* rotated 4 bits to the left, without the carry flag being included.)

DROL_M (X0, K4, dwData1);

L1

@ Corresponding MELSEC command
- DROL (Left rotation of 32-bit data)

5.11.8 32-bit data left rotation (carry flag included) DRCL_M

TN

The specified BIN 32-bit data are rotated n bits to the left, with the carry flag being included.

M Function definition

BOOL DRCL_M (BOOL EN, ANY16 n, ANY32 D);

Argument Name INJOUT Description
EN N Execution.condition (Function is executed only when
the result is TRUE)
n IN Number of rotations (0 to 31) (BIN 16-bit data)
D IN/OUT Data to be rotated, rotation result (BIN 32-bit data)

Remarks: When a bit device is specified in "D", the data in the specified number of
digits are rotated.

Return Value Description
BOOL Execution condition
@ Example of use
(* When execution condition X0 turns ON, the 32-bit data in dwData1 are *)
(* rotated 4 bits to the left, with the carry flag being included. *)

DRCL_M (X0, K4, dwData1);

@ Corresponding MELSEC command
- DRCL (Left rotation of 32-bit data)

For the usable data type, refer to "3.2.2
About ANY type".

5 MELSEC FUNCTIONS

5.12 Shift

5.12.1 n-bit right shift SFR_M

TN

The specified BIN 16-bit data are shifted n bits to the right.

B Function definition

BOOL SFR_M (BOOL EN, ANY16 n, ANY16 D);

| Argument Name IN/OUT Description
EN IN Execution.condition (Function is executed only when
the result is TRUE)
n IN Number of shifts (0 to 15) (BIN 16-bit data)
D IN/OUT Data to be shifted, shift result (BIN 16-bit data)
Return Value Description
BOOL Execution condition

@ Example of use
(* When execution condition X0 turns ON, the data in D100 are shifted 4 bits *)
(* to the right. *)
SFR_M (X0, K4, D100);

L1

5.12.2 n-bit left shift

@ Corresponding MELSEC command
» SFR (n-bit right shift of 16-bit data)

SFL_M

TN

The specified BIN 16-bit data are shifted n bits to the left.

B Function definition

BOOL SFL_M (BOOL EN, ANY16 n, ANY16 D);

Argument Name INJOUT Description

Execution condition (Function is executed only when

EN IN the result is TRUE)

n IN Number of shifts (0 to 15) (BIN 16-bit data)

INJOUT Data to be shifted, shift result (BIN 16-bit data)

Return Value Description

BOOL Execution condition

@ Example of use
(* When execution condition X0 turns ON, the data in D100 are shifted 4 bits *)
(* to the left. *)
SFL_M (X0, K4, D100);

@ Corresponding MELSEC command
= SFL (n-bit left shift of 16-bit data)

For the usable data type, refer to "3.2.2
About ANY type".

5 MELSEC FUNCTIONS

5.12.3 n-bit data 1-bit right shift BSFR_M

TN

n points of bit data, starting at the specified device, are shifted one bit to the right.
B Function definiion =~ BOOL BSFR_M (BOOL EN, ANY16 n, ANY16 D);

Argument Name INJOUT Description
EN N Execution condition (Function is executed only when
the result is TRUE)
n IN Number of devices to be shifted (BIN 16-bit data)
D INJOUT Data to be shifted, shift result (bit data)
Return Value Description
BOOL Execution condition
@ Example of use

(* When execution condition X0 turns ON, the data in M100 to M104 are *)
(* shifted 1 bit to the right.)

BSFR_M (X0, K5, M100);

@ @ Corresponding MELSEC command

- BSFR (1-bit right shift of n-bit data)

5.12.4 n-bit data 1-bit left shift ~BSFL_M

TN

n points of bit data, starting at the specified device, are shifted one bit to the left.
B Function definiton =~ BOOL BSFL_M (BOOL EN, ANY16 n, BOOL D);

Argument Name IN/OUT Description
EN IN Execution.condition (Function is executed only when
the result is TRUE)
n IN Number of devices to be shifted (BIN 16-bit data)
D IN/OUT Data to be shifted, shift result (bit data)
Return Value Description
BOOL Execution condition
@ Example of use

(* When execution condition X0 turns ON, the data in M100 to M104 are *)
(* shifted 1 bit to the left. *)

BSFL_M (X0, K5, M100);

@ @ Corresponding MELSEC command

- BSFL (1-bit left shift of n-bit data)

For the usable data type, refer to "3.2.2
About ANY type".

5 MELSEC FUNCTIONS

5.12.5 1-word right shift ~DSFR_M

TN

n points of 16-bit data, starting at the specified device, are shifted one word to the right.
B Function definition =~ BOOL DSFR_M (BOOL EN, ANY16 n, ANY16 D);

Argument Name INJOUT Description
EN N Execution condition (Function is executed only when
the result is TRUE)
n IN Number of devices to be shifted (BIN 16-bit data)
D INJOUT Data to be shifted, shift result (BIN 16-bit data)
Return Value Description
BOOL Execution condition
@ Example of use

(* When execution condition X0 turns ON, the data in D100 to D106 are)
(* shifted 1 word to the right.)

DSFR_M (X0, K7, D100);

@ @ Corresponding MELSEC command

- DSFR (1-word right shift of n-word data)

5.12.6 1-word left shift DSFL_M

TN

n points of 16-bit data, starting at the specified device, are shifted one word to the left.
B Function definiton =~ BOOL DSFL_M (BOOL EN, ANY16 n, ANY16 D);

Argument Name IN/OUT Description
EN IN Execution.condition (Function is executed only when
the result is TRUE)
n IN Number of devices to be shifted (BIN 16-bit data)
D ouT Data to be shifted, shift result (BIN 16-bit data)
Return Value Description
BOOL Execution condition
@ Example of use

(* When execution condition X0 turns ON, the data in D100 to D106 are *)
(* shifted 1 word to the left. *)

DSFL_M (X0, K7, D100);

@ @ Corresponding MELSEC command

- DSFL (1-word left shift of n-word data)
For the usable data type, refer to "3.2.2
About ANY type".

5 MELSEC FUNCTIONS

5.13 Bit Processing

5.13.1 Bit set of word device BSET_M

TN

Bit n of the specified word device is set.

B Function definition

BOOL_BSET_M (BOOL EN, ANY16 n, ANY16 D);

| Argument Name IN/OUT Description

EN IN Execution condition (Function is executed only when the

result is TRUE)
n IN Bit number to be set (BIN 16-bit data)
D IN/JOUT Data to be set, bit set result (BIN 16-bit data)
Return Value Description
BOOL Execution condition
@ Example of use
(* When execution condition X0 turns ON, bit 8 of D100 is set. *)

BSET_M (X0, K8, D100);

L1

@ Corresponding MELSEC command
- BSET (Bit set of word device)

5.13.2 Bit reset of word device BRST_M

TN

Bit n of the specified word device is reset.

B Function definition

BOOL_BRST_M (BOOL EN, ANY16 n, ANY16 D);

| Argument Name IN/JOUT Description

EN IN Execution condition (Function is executed only when the

result is TRUE)
n IN Bit number to be reset (BIN 16-bit data)
D INJOUT Data to be reset, bit reset result (BIN 16-bit data)
Return Value Description
BOOL Execution condition
@ Example of use
(* When execution condition X0 turns ON, bit 8 of D100 is reset.)

BRST_M (X0, K8, D100);

@ Corresponding MELSEC command
- BRST (Bit reset of word device)

For the usable data type, refer to "3.2.2 About
ANY type".

5 MELSEC FUNCTIONS

5.13.3 Bit test of word device TEST_MD

TN

The bit status in the specified position of the specified word device is written to the specified bit device.

M Function definition

BOOL TEST_MD (BOOL EN, ANY16 S1, ANY 16 S2, BOOL D);

| Argument Name IN/OUT Description
EN N Execution condition (Function is executed only when the
result is TRUE)
S1 IN Data to be extracted (BIN 16-bit data)
S2 IN Position of bit to be extracted (BIN 16-bit data)
D ouT Extracted data (bit data)
Return Value Description
BOOL Execution condition
@ Example of use
(* When execution condition X0 turns ON, MO is turned ON/OFF *)
(* according to the status of bit 10 of D100. *)

TEST_MD (X0, D100, K10, MO);

L1

@ Corresponding MELSEC command
- TEST (Bit set)

5.13.4 Bit test of 32-bitdata DTEST_MD

TN

The bit in the specified position of the specified BIN 32-bit data is written to the specified bit device.

M Function definition

BOOL DTEST_MD (BOOL EN, ANY32 S1, ANY16 S2,BOOL D);

| Argument Name IN/OUT Description
EN N Execution condition (Function is executed only when the
result is TRUE)
S1 IN Data to be extracted (BIN 32-bit data)
S2 IN Position of bit to be extracted (BIN 16-bit data)
D ouT Extracted data (bit data)
Return Value Description
BOOL Execution condition
@ Example of use
(* When execution condition X0 turns ON, bit 10 in dData is fetched and *)
(* written to MO. *)

DTEST_MD (X0, dData, K10, MO);

@ Corresponding MELSEC command
- DTEST (Bit set)

For the usable data type, refer to "3.2.2 About
ANY type".

5 MELSEC FUNCTIONS

5.13.5 Bit device batch reset BKRST_ M

n points, starting at the specified bit device, are reset.
B Function definition = BOOL BKRST_M (BOOL EN, BOOL S1, ANY16 n);

TN

Argument Name IN/OUT Description
EN IN Execution condition (Function is executed only when the
result is TRUE)
S1 IN Head of data to be reset (bit data)
n IN Number of bits to be reset (BIN 16-bit data)
Return Value Description
BOOL Execution condition

@ Example of use

(* When execution condition X0 turns ON, the number of points stored in D100, *)

(* starting at M10, are reset.

%)

BKRST_M (X0, M10, D100);

m @ Corresponding MELSEC command

- BKRST (Batch reset of bit devices)

For the usable data type, refer to "3.2.2 About
ANY type".

5 MELSEC FUNCTIONS

5.14 Data Processing

5.14.1 Data search

SER_M

TN

n points of data, starting at the specified BIN 16-bit data, are searched for the specified BIN 16-bit data.

B Function definition

BOOL SER_M (BOOL EN, ANY16 S1, ANY16 S2, ANY16 n, ANY16(2) D);

Argument Name INJOUT Description

EN IN Execution condition (Function is executed only when the
result is TRUE)

S1 IN Data to be searched for (BIN 16-bit data)

S2 IN Data to be searched (BIN 16-bit data)

n IN Number of data to be searched (BIN 16-bit data)

D ouT Search result D[0] |Match position

(ARRAY [0..1] OF ANY16) | D[1] |[Number of matches
Return Value Description
BOOL Execution condition

@ Example of use
(* When execution condition X0 turns ON, D300 points of data, starting at D200, *)
(* are searched for D100. *
(* The number of data that matched the search target is stored into D[1], and the *)
(* relative value indicating the number of points from D200 is stored into D[0]. *)
SER_M (X0, D100, D200, D300, D);

L1

@ Corresponding MELSEC command
- SER (16-bit data search)

5.14.2 32-bit data search DSER M

TN

2n points of data, starting at the specified BIN 32-bit data, are searched for the specified BIN 32-bit data.

M Function definition

BOOL SER_M (BOOL EN, ANY16 S1, ANY16 S2, ANY16 n, ANY16(2) D);

| Argument Name IN/JOUT Description

EN IN Execu_tion condition (Function is executed only when the
result is TRUE)

S1 IN Data to be searched for (BIN 32-bit data)

S2 IN Data to be searched (BIN 32-bit data)

n IN Number of data to be searched (BIN 16-bit data)

D ouT Search result D[0] [Match position

(ARRAY [0..1] OF ANY16) | D[1] [Number of matches
Return Value Description
BOOL Execution condition

@ Example of use
(* When execution condition X0 turns ON, the number of points stored in D100,
(* starting at dData2, are searched on a 32-bit basis for dData1 and dData1+1.
(* The number of data that matched the search target is stored into
(* ArrayResult[1], and the relative value indicating the number of points from
(* dData2 is stored into ArrayResult[0].
DSER_M (X0, dData1, dData2, D100, ArrayResult);

*

*

*

*
~— — — — —

@ Corresponding MELSEC command
- DSER (32-bit data search)

For the usable data type, refer to "3.2.2 About
ANY type".

5 MELSEC FUNCTIONS

5.14.3 Bit check

SUM_M

TN

The number of bits having 1 in the specified BIN 16-bit data is counted.

M Function definition

BOOL SUM_M (BOOL EN, ANY16 S1, ANY16 D),

Argument Name IN/OUT Description
EN IN Execution condition (Function is executed only when the
result is TRUE)
S1 IN Data to be counted (BIN 16-bit data)
D ouT Count result (BIN 16-bit data)
Return Value Description
BOOL Execution condition

@ Example of use
(* When execution condition X0 turns ON, the number of bits having 1 in dData *)
(* is stored into Result. *)
SUM_M (X0, iData, Result);

L1

@ Corresponding MELSEC command
- SUM (16-bit data bit check)

5.14.4 32-bit data bit check DSUM_M

TN

The number of bits having 1 in the specified BIN 32-bit data is counted.

M Function definition

BOOL DSUM_M (BOOL EN);

Argument Name IN/OUT Description
EN IN Execution condition (Function is executed only when
the result is TRUE)
S1 IN Data to be counted (BIN 32-bit data)
D ouT Count result (BIN 16-bit data)
Return Value Description
BOOL Execution condition
@ Example of use
(* When execution condition X0 turns ON, the number of bits having 1 *)
(* in iData is stored into Result. *)

DSUM_M (X0, dData, Result);

@ Corresponding MELSEC command
- DSUM (32-bit data bit check)

For the usable data type, refer to "3.2.2 About
ANY type".

5 MELSEC FUNCTIONS

5.14.5 Decode @ DECO M
\
The lower n bits of the specified data are decoded.
B Function definition BOOL DECO_M (BOOL EN, ANY_SIMPLE S1, ANY16 n, ANY_SIMPLE D);
Argument Name IN/OUT Description
EN IN Execu_tion condition (Function is executed only when the
result is TRUE)

S1 IN Data to be decoded

n IN Valid bit length (1 to 8) *0: No processing (BIN 16-bit data)

D ouT Decode result

Remarks: The DINT, REAL and STRING types cannot be used in arguments S1" and

"D".

Return Value Description
BOOL Execution condition

@ Example of use

(* When execution condition X0 turns ON, the lower Bit Size bits of D100 are *)

(* decoded, and the decode result is stored into 25" bits, starting at Result. ~ *)
DECO_M (X0, D100, BitSize, Result)

L1

@ Corresponding MELSEC command

- DECO (8 — 256 bits decode)
For the usable data type, refer to "3.2.2 About
ANY type".
5.14.6 Encode @ ENCO_M
TN
2" bits of data, starting at the specified data, are encoded.
B Function definition = BOOL ENCO_M (BOOL EN, ANY_SIMPLE S1, ANY16 n, ANY16 D);
Argument Name INJOUT Description
EN IN Execu.tion condition (Function is executed only when the
result is TRUE)
S1 IN Data to be encoded
n IN Valid bit length (1 to 8) *0: No processing (BIN 16-bit data)
D ouT Encode result
Remarks: The DINT, REAL and STRING types cannot be used in argument S1".
Return Value Description
BOOL Execution condition
@ Example of use
(* When execution condition X0 turns ON, 25" pits, starting at D100, are *)
(* encoded, and the result is stored into Result. *)

ENCO (X0, D100, BitSize, Result);

@ Corresponding MELSEC command
- ENCO (256 — 8 bits decode)

For the usable data type, refer to "3.2.2 About
ANY type".

5 MELSEC FUNCTIONS

5.14.7 7-segment decode = SEG_M

TN

The lower 4 bits (0 to F) of the specified data are decoded into 7-segment display data.

B Function definition

BOOL SEG_M (BOOL EN, ANY16 S1, ANY16 D);

Argument Name IN/OUT Description
EN IN Execution condition (Function is executed only when the
result is TRUE)
S1 IN Data to be decoded
D ouT Decode result (BIN 16-bit data)
Return Value Description
BOOL Execution condition

@ Example of use
(* When execution condition X0 turns ON, the lower 4 bits of D100 are decoded *)
(* into 7-segment display data, and the result is stored into Result. *)
SEG_M (X0, D100, Result);

L1

@ Corresponding MELSEC command
- SEG (7-segment decode)

5.14.8 4-bit disconnection of 16-bit data DIS_M

TN

The data in the lower n digits of the specified BIN 16-bit data are disconnected and stored into the lower 4 bits
of n points, starting at the specified device.

M Function definition

BOOL DIS_M (BOOL EN, ANY16 S1, ANY16 n, ANY16 D),

Argument Name INJOUT Description

Execution condition (Function is executed only when the
result is TRUE)

EN IN

S1 IN Data to be disconnected (BIN 16-bit data)

Number of disconnected data (1 to 4) *0: No processing

" IN (BIN 16-bit data)
D ouT Disconnection result (BIN 16-bit data)
Return Value Description
BOOL Execution condition

@ Example of use
(* When execution condition X0 turns ON, the data in the lower D200 digits)
(* (1 digit = 4 bits) of D100 are stored into the lower 4 bits of D200 points, *)
(* starting at Resullt. *)
DIS_M (X0, D100, D200, Result);

@ Corresponding MELSEC command
- DIS (4-bit disconnection of 16-bit data)

For the usable data type, refer to "3.2.2 About
ANY type".

5 MELSEC FUNCTIONS

5.14.9 4-bit connection of 16-bit data

UNI_M

TN

The lower 4 bits of n points of BIN 16-bit data, starting at the specified device, are connected to the specified

device.
M Function definition

BOOL UNI_M (BOOL EN, ANY16 S1, ANY16 n, ANY16 D);

Argument Name IN/OUT Description
EN IN Execu_tion condition (Function is executed only when the
result is TRUE)
S1 IN Data to be connected (BIN 16-bit data)
n IN Number of connected data (1 to 4) *0: No processing
(BIN 16-bit data)
D ouT Connection result (BIN 16-bit data)

Return Value

Description

BOOL

Execution condition

@ Example of use

(* When execution condition X0 turns ON, the lower 4 bits of 3 points of 16-bit *)
(* data, starting at D100 are connected to Result. *)
UNI_M (X0, D100, K3, Result);

L1

5.14.10 Bit disconnection of any data

@ Corresponding MELSEC command
* UNI (4-bit connection of 16-bit data)

NDIS_M

TN

The bits of the data stored in and after the specified device are disconnected in units of the specified bits.
BOOL NDIS_M (BOOL EN, ANY16 S1, ANY16 S2, ANY16 D);

M Function definition

Argument Name IN/OUT Description

EN IN Execu_tion condition (Function is executed only when the
result is TRUE)

S1 IN Data to be disconnected (BIN 16-bit data)

S2 IN Disconnegtion unit (number of bits to be disconnected)
(BIN 16-bit data)

D ouT Disconnection result (BIN 16-bit data)

Return Value Description
BOOL Execution condition
@ Example of use
(* When execution condition X0 turns ON, the bits of the data stored in and *)

(* after iData1 are disconnected in units of iData2 bits, and the result is stored *)
(* into Result and later.
NDIS_M (X0, iData1, iData2, Result);

*

@ Corresponding MELSEC command
= NDIS (Disconnection of any bit data)

For the usable data type, refer to "3.2.2 About
ANY type".

5 MELSEC FUNCTIONS

5.14.11 Bit connection of any data NUNI_M

TN

The bits of the data stored in and after the specified device are connected in units of the specified bits.
B Function definiton ~ BOOL NUNI_M (BOOL EN, ANY16 S1, ANY16 S2, ANY16 D);

Argument Name IN/OUT Description

EN IN Execution condition (Function is executed only when the
result is TRUE)

S1 IN Data to be connected (BIN 16-bit data)
Connection unit (number of bits to be connected) (BIN

S2 IN .
16-bit data)

D ouT Connection result (BIN 16-bit data)

Return Value Description
BOOL Execution condition

@ Example of use
(* When execution condition X0 turns ON, the bits of the data stored in and after *)
(* iData1 are connected in units of iData2 bits, and the result is stored into *)
(* Result and later. *)
NUNI_M (X0, iData1, iData2, Result);

@ @ Corresponding MELSEC command

= NUNI (Connection of any bit data)

5.14.12 Byte unit data disconnection =~ WTOB_MD

TN

The BIN 16-bit data stored in and after the specified device are disconnected into n bytes.
B Function definition = BOOL WTOB_MD (BOOL EN, ANY16 S1, ANY16 n, ANY16 D);

Argument Name IN/OUT Description
EN IN Execution condition (Function is executed only when the
result is TRUE)
S1 IN Data to be disconnected in byte units (BIN 16-bit data)
n IN Number of resultant byte data (BIN 16-bit data)
D ouT Disconnection result (BIN 16-bit data)
Return Value Description
BOOL Execution condition

@ Example of use
(* When execution condition X0 turns ON, the 16-bit data stored in and after *)
(* iData1 is disconnected in iData2 bytes, and the result is stored into Result *)
(* and later. *)
WTOB_MD (X0, iData1, iData2, Result);

@ @ Corresponding MELSEC command

- WTOB (Disconnection into byte unit data)

For the usable data type, refer to "3.2.2 About
ANY type".

5 MELSEC FUNCTIONS

5.14.13 Byte unit data connection = BTOW_MD

TN

The lower 8 bits of n points of BIN 16-bit data in and after the specified device are connected in word units.

H Function definition

BOOL BTOW_MD (BOOL EN, ANY16 S1, ANY16 n, ANY16 D);

Argument Name IN/OUT Description

EN IN Execu_tion condition (Function is executed only when the
result is TRUE)
S1 IN Data to be connected in byte units (BIN 16-bit data)
n IN Number of byte data to be connected (BIN 16-bit data)
D ouT Connection result (BIN 16-bit data)
Return Value Description
BOOL Execution condition

@ Example of use
(* When execution condition X0 turns ON, the lower 8 bits of iData2 words of *)
(* 16-bit data in and after iData1 are connected in word units, and the resultis *)
(* stored into Result and later. *)
BTOW_MD (X0, iData1, iData2, Result);

L1

@ Corresponding MELSEC command
- BTOW (Connection of byte unit data)

5.14.14 Data maximum value retrieval MAX_M

TN

The maximum value is retrieved from n points of BIN 16-bit data, starting at the specified device.

M Function definition

BOOL MAX_M (BOOL EN, ANY16 S1, ANY16 n, ANY16 D);

Argument Name IN/OUT Description
EN IN Execution condition (Function is executed only when the
result is TRUE)
S1 IN Head of data to be retrieved (BIN 16-bit data)
n IN Number of data to be retrieved (BIN 16-bit data)
D ouT Maximum value retrieval result (BIN 16-bit data)

Remarks: When a constant is specified for the timer set value, only a decimal number
can be specified.
The timer set value can be specified within the range 0 to 32767.

Return Value Description
BOOL Execution condition
@ Example of use
(* When execution condition X0 turns ON, the maximum value is retrieved *)
(* from iData2 points of 16-bit BIN data in and after iData1,and the result is *)
(* stored into Result. * *)

MAX_M (X0, iData1, iData2, Result)

@ Corresponding MELSEC command
- MAX (16-bit data maximum value retrieval)

For the usable data type, refer to "3.2.2 About
ANY type".

5 MELSEC FUNCTIONS

5.14.15 32-bit data maximum value retrieval

DMAX_M

TN

The maximum value is retrieved from n points of BIN 32-bit data, starting at the specified device.
BOOL DMAX_M (BOOL EN, ANY32 S1, ANY16 n, ANY32 D);

H Function definition

Argument Name INJOUT Description
EN IN Execution condition (Function is executed only when the
result is TRUE)
S1 IN Head of data to be retrieved (BIN 32-bit data)
n IN Number of data to be retrieved (BIN 16-bit data)
D ouT Maximum value retrieval result (BIN 32-bit data)
Return Value Description
BOOL Execution condition
@ Example of use
(* When execution condition X0 turns ON, the maximum value is retrieved *)
(* from iData points of 32-bit BIN data in and after dData, and the result *)

(* is stored into Result.
DMAX_M (X0, dData, iData, Result);

L1

5.14 .16 Data minimum value retrieval

@ Corresponding MELSEC command
- DMAX (32-bit data maximum value retrieval)

MIN_M

TN

The minimum value is retrieved from n points of BIN 16-bit data, starting at the specified device.
BOOL MIN_M (BOOL EN, ANY16 S1, ANY16 n, ANY16 D);

M Function definition

Argument Name IN/OUT Description
EN IN Execution condition (Function is executed only when the
result is TRUE)
S1 IN Head of data to be retrieved (BIN 16-bit data)
n IN Number of data to be retrieved (BIN 16-bit data)
D ouT Minimum value retrieval result (BIN 16-bit data)

Return Value

Description

BOOL

Execution condition

@ Example of use

(* When execution condition X0 turns ON, the minimum value is retrieved from *)

(* iData2 points of 16-bit BIN data in and after iData1, and the result is stored *)

(* into Result. Execution condition X0 is output to the assigned device of bData. *)
MIN_M (X0, iData1, iData2, Result);

@ Corresponding MELSEC command
= MIN (16-bit data minimum value retrieval)

For the usable data type, refer to "3.2.2 About
ANY type".

5 MELSEC FUNCTIONS

5.14.17 32-bit data minimum value retrieval DMIN_M

TN

The minimum value is retrieved from n points of BIN 32-bit data, starting at the specified device.

B Function definition

BOOL DMIN_M (BOOL EN, ANY32 S1, ANY16 n, ANY32 D);

Argument Name IN/OUT Description
EN IN Execution condition (Function is executed only when the
result is TRUE)

S1 IN Head of data to be retrieved (BIN 32-bit data)

n IN Number of data to be retrieved (BIN 16-bit data)

D ouT Minimum value retrieval result (BIN 32-bit data)

Return Value Description
BOOL Execution condition

@ Example of use
(* When execution condition X0 turns ON, the minimum value is retrieved from *)
(* iData points of 32-bit BIN data in and after dData, and the result is stored *)
(* into Result and Result+1. *)
DMIN_M (X0, dData, iData, Result);

L1

5.14.18 Data sort

@ Corresponding MELSEC command
= DMIN (32-bit data minimum value retrieval)

SORT_M

TN

n points of BIN 16-bit data, starting at the specified device, are sorted in ascending or descending order.

B Function definition

BOOL SORT_M (BOOL EN, ANY16 S1, ANY16 n, ANY16 S2, BOOL D1, ANY16 D2);

Argument Name INJOUT Description

EN IN Execution condition (Function is executed only when the
result is TRUE)

S1 IN Head of data to be sorted (BIN 16-bit data)

n IN Number of data to be sorted (BIN 16-bit data)
Number of data to be compared at one execution (BIN

S2 IN .
16-bit data)

D1 ouT Bit device to be turned ON at sort completion (bit data)

D2 ouT System used device (BIN 16-bit data)

Remarks: Specify the sort order by turning ON/OFF SM703. When SM703 is OFF:
Ascending order, when SM703 is ON: Descending order

Return Value Description
BOOL Execution condition
@ Example of use
(* When execution condition X0 turns ON, iData2 points of BIN 16-bit data, *)
(* starting at iData1, are sorted in ascending or descending order. *)

SORT_M (X0, iData1, iData2, iData3, bData, iData4);

@ Corresponding MELSEC command
- SORT (16-bit data sort)

For the usable data type, refer to "3.2.2 About
ANY type".

5 MELSEC FUNCTIONS

5.14.19 32-bit data sort DSORT_M

TN

n points of BIN 32-bit data, starting at the specified device, are sorted in ascending or descending order.
B Function definition = BOOL DSORT_M (BOOL EN, ANY32 S1, ANY16 n, ANY16 S2, BOOL D1, ANY16 D2);

| Argument Name IN/JOUT Description

EN IN Execu_tion condition (Function is executed only when the
result is TRUE)

S1 IN Head of data to be sorted (BIN 32-bit data)

n IN Number of data to be sorted (BIN 16-bit data)
Number of data to be compared at one execution (BIN

S2 IN .
16-bit data)

D1 ouT Bit device to be turned ON at sort completion (bit data)

D2 ouT System used device (BIN 16-bit data)

Remarks: Specify the sort order by turning ON/OFF SM703. When SM703 is OFF:
Ascending order, when SM703 is ON: Descending order

Return Value Description
BOOL Execution condition
@ Example of use
(* When execution condition X0 turns ON, iData1 points of BIN 32-bit data, *)
(* starting at dData, are sorted in ascending or descending order. *)

DSORT_M (X0, dData, iData1, iData2, bData, iData3);

@ @ Corresponding MELSEC command

- DSORT (32-bit data sort)

5.14.20 Total value calculation =~ WSUM_M

TN

n points of BIN 16-bit data, starting at the specified device, are all added.
B Function definiton =~ BOOL WSUM_M (BOOL EN, ANY16 S1, ANY16 n, ANY32 D);

Argument Name IN/OUT Description
EN IN Execution condition (Function is executed only when the
result is TRUE)
Data from which total value will be calculated (BIN 16-bit
S1 IN
data)
n IN Number of data (BIN 16-bit data)
D ouT Total value storage destination (BIN 32-bit data)
Return Value Description
BOOL Execution condition
@ Example of use
(* When execution condition X0 turns ON, iData2 points of 16-bit BIN data, ")
(* starting at iData1, are all added, and the result is stored into Result. *)

WSUM_M (X0, iData1, iData2, Result);

@ @ Corresponding MELSEC command

- WSUM (16-bit total value calculation)

For the usable data type, refer to "3.2.2 About
ANY type".

5 MELSEC FUNCTIONS

5.14.21 32-bit total value calculation

DWSUM_M

TN

n points of BIN 32-bit data, starting at the specified device, are all added.
BOOL DWSUM_M (BOOL EN, ANY32 S1, ANY16 n, ANY16(4) D);

B Function definition

| Argument Name IN/OUT Description
EN IN Execution condition (Function is executed only when the
result is TRUE)
1 IN Data from which total value will be calculated (BIN 32-bit
data)
n IN Number of data (BIN 16-bit data)
Total value storage destination | DI[0] o
(ARRAY [0..3] OF ANY16) D[1] Upper 4 digits
D ouT to
D[2] Lower 4 digits
D[3]
Return Value Description
BOOL Execution condition

@ Example of use

(* When execution condition X0 turns ON, iData points of 32-bit BIN data,
(* starting at dData, are all added, and the result is stored into Result.

")
“)

DWSUM_M (X0, dData, iData, Result);

@ Corresponding MELSEC command
- DWSUM (32-bit total value calculation)

For the usable data type, refer to "3.2.2 About
ANY type".

5 MELSEC FUNCTIONS

5.15 Structuring

5.15.1 Refresh COM_M

TN

The 1/O refresh and general data processing of the intelligent function module are performed.
B Function definiion = BOOL COM_M (BOOL EN);

Argument Name INJOUT Description

Execution condition
EN IN (Only value TRUE indicating that the result is always
valid or normally ON device SM400 can be specified.)

Return Value Description

BOOL Execution condition

@ Example of use
(* When SM755 is OFF: I/O refresh and general data processing of intelligent *)
(* function module, when SM755 is ON: Only general data processing is *)
(* performed. *)
COM_M (TRUE);

@ @ Corresponding MELSEC command

- COM (Refresh command)

5 MELSEC FUNCTIONS

5.16 Buffer Memory Access

5.16.1 Intelligent function module 1-word dataread @ FROM_M

TN

The specified points of data are read from the specified address and later of the buffer memory in the specified
intelligent function module or special function module.
B Function definition = BOOL FROM_M (BOOL EN, ANY16 n1, ANY16 n2, ANY16 n3, ANY16 D);

Argument Name IN/OUT Description

EN IN Execution condition (Function is executed only when the
result is TRUE)

n IN Head input number of specified intelligent function
module/special function module (BIN 16-bit data)

n2 IN Head address of data to be read (BIN 16-bit data)

n3 IN Number of data to be read (BIN 16-bit data)

D ouT Read data (BIN 16-bit data)

Return Value Description
BOOL Execution condition

@ Example of use

(* When execution condition X0 turns ON, 1 word of data are read to DO from *)

(* address 10 and later of the buffer memory in the intelligent function module *)

(* mounted at I/O numbers 040 to 05F. *)
FROM_M (X0, H4, K10, K1, DO);

m @ Corresponding MELSEC command

* FROM (Reading 1-word data from the intelligent function module)

5.16.2 Intelligent function module 2-word data read DFRO_M

TN

The specified points X2 of data are read from the specified address and later of the buffer memory in the
specified intelligent function module or special function module.
B Function definiton =~ BOOL DFRO_M (BOOL EN, ANY16 n1, ANY16 n2, ANY16 n3, ANY32 D);

| Argument Name IN/OUT Description

EN IN Execu_tion condition (Function is executed only when the
result is TRUE)

n IN Head input number of specified intelligent function
module/special function module (BIN 16-bit data)

n2 IN Head address of data to be read (BIN 16-bit data)

n3 IN Number of data to be read (BIN 16-bit data)

D ouT Read data (BIN 32-bit data)

Return Value Description
BOOL Execution condition

@ Example of use

(* When execution condition X0 turns ON, 2 words of data are read to DwResult *)

(* from addresses 602, 603 and later of the buffer memory in the intelligent *)

(* function module mounted at I/O numbers 040 to O5F. *)
DFRO_M (X0, H4, K602, K1, DwResult);

@ Corresponding MELSEC command

» DFRO (Reading 2-word data from the intelligent function module)

For the usable data type, refer to "3.2.2 About
ANY type".

5 MELSEC FUNCTIONS

5.16.3 Intelligent function module 1-word data write TO_M
\

n3 points of data, starting at the specified device, are written to the specified address and later of the buffer
memory in the specified intelligent function module or special function module.
B Function definition =~ BOOL TO_M (BOOL EN, ANY16 S1, ANY16 n1, ANY16 n2, ANY16 n3);

Argument Name IN/OUT Description

EN IN Execu_tion condition (Function is executed only when the
result is TRUE)

S1 IN Data to be written (BIN 16-bit data)

n IN Head input number of specified intelligent function
module/special function module (BIN 16-bit data)

n2 IN Head address where data will be written (BIN 16-bit data)

n3 IN Number of data to be written (BIN 16-bit data)

Return Value Description
BOOL Execution condition

@ Example of use
(* When execution condition X0 turns ON, 3 is written to address 0 of the buffer *)
(* memory in the intelligent function module mounted at I/O numbers 040 to 05F. *)
TO_M (X0, K3, H4, KO, K1);

m @ Corresponding MELSEC command

= TO (Writing 1-word data to intelligent function module)

5.16.4 Intelligent function module 2-word data write DTO_M
\

n3X2 points of data, starting at the specified device, are written to the specified address and later of the buffer
memory in the specified intelligent function module or special function module.
B Function definiton = BOOL DTO_M (BOOL EN, ANY32 S1, ANY16 n1, ANY16 n2, ANY16 n3);

Argument Name INJOUT Description
EN IN Execu'tion condition (Function is executed only when the
result is TRUE)
S1 IN Data to be written (BIN 32-bit data)
n IN Head input number of specified intelligent function
module/special function module (BIN 16-bit data)
n2 IN Head address where (3X2) points of data will be written
(BIN 16-bit data)
n3 IN Number of data to be written (BIN 16-bit data)
Return Value Description
BOOL Execution condition
@ Example of use
(* When execution condition X0 turns ON, 0 is written to addresses 41, 42 *)
(* of the buffer memory in the intelligent function module mounted at I/O *)
(* numbers 040 to O5F. *)

DTO_M (X0, KO, H4, K41, K1);

m @ Corresponding MELSEC command

- DTO (Writing 2-word data to intelligent function module)

For the usable data type, refer to "3.2.2 About
ANY type".

5 MELSEC FUNCTIONS

5.17 Character string processing

5.17.1 BIN—decimal ASCII conversion = BINDA_S_MD
\

The numeric value in each digit of the specified BIN 16-bit data represented in decimal is converted into ASCII
code data.
B Function definiton ~ BOOL BINDA_S_MD (BOOL EN, ANY16 S1, STRING(8) D);

| Argument Name IN/JOUT Description
EN IN Execution condition (Function is executed only when the
result is TRUE)
S1 IN Data to be converted (BIN 16-bit data)
D ouT Conversion result (decimal ASCII code data)
Return Value Description
BOOL Execution condition

@ Example of use
(* When execution condition X0 turns ON, the numeric value in each digit of the *)
(* BIN data stored in iData and represented in decimal is converted into ASCIl *)
(* code, and the result is stored into sData. *)
BINDA_S_MD (X0, iData, sData);

@ @ Corresponding MELSEC command

- BINDA (BIN 16-bit to decimal ASCII conversion)

5.17.2 32-bit BIN—decimal ASCII conversion = DBINDA_S_MD
\

The numeric value in each digit of the specified BIN 32-bit data represented in decimal is converted into ASCII
code data.
B Function definiton =~ BOOL DBINDA_S_MD (BOOL EN, ANY32 S1, STRING(12) D);

Argument Name IN/OUT Description
EN IN Execution condition (Function is executed only when the
result is TRUE)
S1 IN Data to be converted (BIN 32-bit data)
D ouT Conversion result (decimal ASCII code data)
Return Value Description
BOOL Execution condition
@ Example of use

(* When execution condition X0 turns ON, the numeric value in each digit of *)

(* the BIN data stored in dData and represented in decimal is converted into *)

(* ASCII code, and the result is stored into sData. *)

DBINDA_S_MD (X0, dData, sData);

@ @ Corresponding MELSEC command

- DBINDA (BIN 32-bit — decimal ASCII conversion)

For the usable data type, refer to "3.2.2 About
ANY type".

5 MELSEC FUNCTIONS

5.17.3 BIN—hexadecimal ASCII conversion

BINHA_S_MD

TN

The numeric value in each digit of the specified BIN 16-bit data represented in hexadecimal is converted into

ASCII code data.

M Function definition

BOOL BINHA_S_MD (BOOL EN, ANY 1651, STRING(6) D);

Argument Name IN/OUT Description
EN IN Execution condition (Function is executed only when the
result is TRUE)
S1 IN Data to be converted (BIN 16-bit data)
D ouT Conversion result (hexadecimal ASCII code data)
Return Value Description
BOOL Execution condition
@ Example of use

(* When execution condition X0 turns ON, the numeric value in each digit of *)

(* the BIN data stored in iData and represented in hexadecimal is converted *

(* into ASCII code, and the result is stored into sData. *)

BINHA_S MD (X0, iData, sData);

L1

5.17.4 32-bit BIN—hexadecimal ASCII conversion

@ Corresponding MELSEC command
- BINHA (BIN 16-bit — hexadecimal ASCII conversion);

DBINHA_S_MD

TN

The numeric value in each digit of the specified BIN 32-bit data represented in hexadecimal is converted into

ASCII code data.

M Function definition

BOOL DBINHA_S_MD (BOOL EN, ANY32 S1, STRINGS (10) D);

| Argument Name IN/JOUT Description
EN IN Execu_tion condition (Function is executed only when the
result is TRUE)
S1 IN Data to be converted (BIN 32-bit data)
D ouT Conversion result (hexadecimal ASCII code data)
Return Value Description
BOOL Execution condition
@ Example of use
(* When execution condition X0 turns ON, the numeric value in each digit of *)
(* the BIN data stored in dData and represented in hexadecimal is converted *)
(* into ASCII code, and the result is stored into sData. *)

DBINHA_S MD (X0, dData, sData);

@ Corresponding MELSEC command
- DBINHA (BIN 32-bit — hexadecimal ASCII conversion)

For the usable data type, refer to "3.2.2 About
ANY type".

5 MELSEC FUNCTIONS

5.17.5 BCD 4-digit—decimal ASCII conversion

BCDDA_S_MD

TN

The numeric value in each digit of the specified BCD 4-digit data is converted into ASCII code.
BOOL BCDDA_S_MD (BOOL EN, ANY16 S1, STRING(6) D);

B Function definition

| Argument Name IN/OUT Description
EN IN Execution condition (Function is executed only when the
result is TRUE)
S1 IN Data to be converted (BCD 4-digit data)
D ouT Conversion result (decimal ASCII code data)
Return Value Description
BOOL Execution condition
@ Example of use
(* When execution condition X0 turns ON, the numeric value in each digit of *)
(* the BCD data stored in iData and represented in decimal is converted into *)
(* ASCII code, and the result is stored into sData.)

BCDDA_S_MD (X0, iData, sData);

L1

@ Corresponding MELSEC command
- BCDDA (BCD 4-digit — decimal ASCII conversion)

5.17.6 BCD 8-digit—decimal ASCII conversion

DBCDDA_S_MD

TN

The numeric value in each digit of the specified BCD 8-digit data is converted into ASCII code.
BOOL DBCDDA_S_MD (BOOL EN, ANY32 S1, STRING (10) D);

M Function definition

Argument Name IN/OUT Description
EN IN Execution condition (Function is executed only when the
result is TRUE)
S1 IN Data to be converted (BCD 8-digit data)
D ouT Conversion result (decimal ASCII code data)
Return Value Description
BOOL Execution condition
@ Example of use

(* When execution condition X0 turns ON, the numeric value in each digit of)

(* the BCD data stored in dData and represented in decimal is converted into ~ *)

(* ASCII code, and the result is stored into sData. *)

DBCDDA_S_MD (X0, dData, sData);

@ Corresponding MELSEC command
- DBCDDA (BCD 8-digit — decimal ASCII conversion)

For the usable data type, refer to "3.2.2 About
ANY type".

5 MELSEC FUNCTIONS

5.17.7 Decimal ASCII—BIN conversion DABIN_S MD

TN

The specified decimal ASCII code data is converted into BIN 16-bit data.
BOOL DABIN_S_MD (BOOL EN, STRING (6) S1, ANY16 D);

M Function definition

| Argument Name IN/OUT Description
EN N Execution condition (Function is executed only when the
result is TRUE)
S1 IN Data to be converted (decimal ASCII code data)
D ouT Conversion result (BIN 16-bit data)

Return Value

Description

BOOL

Execution condition

@ Example of use
(* When execution condition X0 turns ON, the decimal ASCII data stored *)
(* in sData is converted into BIN 16-bit data, and the result is stored into iData. *)
DABIN_S_MD (X0, sData, iData);

L1

@ Corresponding MELSEC command
- DABIN (Decimal ASCIl — BIN 16-bit conversion)

5.17.8 Decimal ASCIl—32-bit BIN conversion = DDABIN_S_MD

TN

The specified decimal ASCII code data is converted into BIN 32-bit data.
BOOL DDABIN_S MD (BOOL EN, STRING (11) S1, ANY32 D);

B Function definition

| Argument Name IN/JOUT Description
EN N Execution condition (Function is executed only when the
result is TRUE)
S1 IN Data to be converted (decimal ASCII code data)
D ouT Conversion result (BIN 32-bit data)

Return Value

Description

BOOL

Execution condition

@ Example of use
(* When execution condition X0 turns ON, the decimal ASCII data stored in *)
(* sData is converted into BIN 32-bit data, and the result is stored into dData. *)
DDABIN_S_MD (X0, sData, dData);

@ Corresponding MELSEC command
- DDABIN (Decimal ASCII — BIN 32-bit conversion)

For the usable data type, refer to "3.2.2 About
ANY type".

5 MELSEC FUNCTIONS

5.17.9 Hexadecimal ASCII—BIN conversion HABIN_S MD

TN

The specified hexadecimal ASCII code data is converted into BIN 16-bit data.
BOOL HABIN_S MD (BOOL EN, STRING(4) S1, ANY16 D);

B Function definition

| Argument Name IN/JOUT Description
EN N Execution condition (Function is executed only when the
result is TRUE)
S1 IN Data to be converted (hexadecimal ASCII code data)
D ouT Conversion result (BIN 16-bit data)

Return Value

Description

BOOL

Execution condition

@ Example of use
(* When execution condition X0 turns ON, the hexadecimal ASCI| data stored *)
(* in sData is converted into BIN 16-bit data, and the result is stored into iData. *)
HABIN_S MD (X0, sData, iData);

L1

@ Corresponding MELSEC command
- HABIN (Hexadecimal ASCIl — BIN 16-bit conversion)

5.17.10 Hexadecimal ASCIl—32-bit BIN conversion = DHABIN_S MD

TN

The specified hexadecimal ASCII code data is converted into BIN 32-bit data.
BOOL DHABIN_S MD (BOOL EN, STRING (8) S1, ANY32 D) ;

M Function definition

Argument Name INJOUT Description
EN IN Execution condition (Function is executed only when the
result is TRUE)
S1 IN Data to be converted (hexadecimal ASCII code data)
D ouT Conversion result (BIN 32-bit data)
Return Value Description
BOOL Execution condition

@ Example of use
(* When execution condition X0 turns ON, the hexadecimal ASCII data stored in *)
(* sData is converted into BIN 32-bit data, and the result is stored into dData. *)
DHABIN_S_MD (X0, sData, dData);

@ Corresponding MELSEC command
* DHABIN (Hexadecimal ASCII — BIN 32-bit conversion)

For the usable data type, refer to "3.2.2 About
ANY type".

5 MELSEC FUNCTIONS

5.17.11 Decimal ASCII—BCD 4-digit conversion

DABCD_S_MD

TN

The specified decimal ASCII code data is converted into BCD 4-digit data.
BOOL DABCD_S_MD (BOOL EN, STRING(4) S1, ANY16 D);

W Function definition

| Argument Name IN/OUT Description
EN N Execution condition (Function is executed only when the
result is TRUE)
S1 IN Data to be converted (decimal ASCII code data)
D ouT Conversion result (BCD 4-digit data)
Return Value Description
BOOL Execution condition
@ Example of use
(* When execution condition X0 turns ON, the decimal ASCII data stored in *)

(* sData is converted into BCD 4-digit data, and the result is stored into iData. *)
DABCD_S MD (X0, sData, iData);

L1

5.17.12 Decimal ASCII—BCD 8-digit conversion

@ Corresponding MELSEC command
- DABCD (Decimal ASCIl — BCD 4-digit conversion)

DDABCD_S_MD

TN

The specified decimal ASCII code data is converted into BCD 8-digit data.
BOOL DDABCD_S _MD (BOOL EN, STRING(8) S1, ANY32 D);

B Function definition

| Argument Name IN/JOUT Description
EN N Execution condition (Function is executed only when the
result is TRUE)
S1 IN Data to be converted (decimal ASCII code data)
D ouT Conversion result (BCD 8-digit data)
Return Value Description
BOOL Execution condition
@ Example of use
(* When execution condition X0 turns ON, the decimal ASCII data stored in *)

(* sData is converted into BCD 8-digit data, and the result is stored into dData. *)
DDABCD_S_MD (X0, sData, dData);

@ Corresponding MELSEC command
* DDABCD (Decimal ASCIl — BCD 8-digit conversion)

For the usable data type, refer to "3.2.2 About
ANY type".

5 MELSEC FUNCTIONS

5.17.13 Device comment data read

COMRD_S_MD

TN

The comment of the specified device is read as ASCII code data.
BOOL COMRD_S_MD (BOOL EN, ANY_SIMPLE S1, STRING (32) D);

B Function definition

Argument Name IN/OUT Description
EN N Execution condition (Function is executed only when the
result is TRUE)
S1 IN Data from which comment will be read
D ouT Comment read result (ASCII code data)

Remarks: The DINT, REAL and STRING types cannot be used in argument "S1".

Return Value

Description

BOOL

Execution condition

@ Example of use

(* When execution condition X0 turns ON, the comment set in D100 is read, *)
(* and stored into sData in ASCII code. *)
COMRD_S_MD (X0, D100, sData);

L1

@ Corresponding MELSEC command
- COMRD (Device comment data read)

5.17.14 Character string length detection

LEN_S_MD

The length of the specified character string is obtained.

W Function definition

TN

BOOL LEN_S_MD (BOOL EN, STRING S1, ANY16 D);

Argument Name IN/OUT Description
EN IN Execution condition (Function is executed only when the
result is TRUE)
Data whose character string length will be detected
St N (character string data)
D ouT Detection result (BIN 16-bit data)
Return Value Description
BOOL Execution condition
@ Example of use
(* When execution condition X0 turns ON, the length of the character string *)
(* specified in sData is detected, and stored into iData. *)

LEN_S_MD (X0, sData, iData);

@ Corresponding MELSEC command
- LEN (Character string length detection)

For the usable data type, refer to "3.2.2 About
ANY type".

5 MELSEC FUNCTIONS

5.17.15 BIN—character string conversion STR_S MD

\
The specified BIN 16-bit data is converted into a character string with a decimal point added in the specified
position.
B Function definition BOOL STR_S_MD (BOOL EN, ANY32 S1, ANY16 S2, STRING(9) D);
| Argument Name IN/OUT Description
EN IN Execution condition (Function is executed only when the
result is TRUE)
Number of digits of [S1 Total number of digits (2 to
S1 IN numeric value to be 8 digits)
converted S1+1 [Number of fraction part
(BIN 32-bit data) digits (0 to 5 digits)
S2 IN Data to be converted (BIN 16-bit data)
D ouT Conversion result (character string data)
Remarks: The digits of a bit device cannot be specified in "S1".
Return Value Description
BOOL Execution condition
@ Example of use
(* When execution condition X0 turns ON, the BIN 16-bit data specified in *)
(* iData is converted into a character string with a decimal point added in the)
(* position specified in dData, and the result is stored into sData. *)

STR_S_MD (X0, dData, iData, sData);

@ @ Corresponding MELSEC command

- STR (BIN 16-bit — character string conversion)

5.17.16 32-bit BIN—character string conversion = DSTR_S MD

\
The specified BIN 32-bit data is converted into a character string with a decimal point added in the specified
position.
B Function definiton = BOOL DSTR_S_MD (BOOL EN, ANY32 S1, ANY32 S2 STRING(14) D);
| Argument Name IN/OUT Description
EN IN Execu_tion condition (Function is executed only when the
result is TRUE)
Number of digits of |S1 Total number of digits (2 to
S1 N numeric value to be 8 digits)
converted S1+1 [Number of fraction part
(BIN 32-bit data) digits (0 to 5 digits)
S2 IN Data to be converted (BIN 32-bit data)
D ouT Conversion result (character string data)
Remarks: The digits of a bit device cannot be specified in "S1".
Return Value Description
BOOL Execution condition
@ Example of use
(* When execution condition X0 turns ON, the BIN 32-bit data specified in *)
(* dData1 is converted into a character string with a decimal point added in *)
(* the position specified in dData2, and the result is stored into sData. *)

DSTR_S MD (X0, dData1, dData2, sData);

@ @ Corresponding MELSEC command

- DSTR (BIN 32-bit — character string conversion)

For the usable data type, refer to "3.2.2 About
ANY type".

5 MELSEC FUNCTIONS

5.17.17 Character string—BIN conversion VAL _S MD
\

The specified character string is converted into BIN 16-bit data, and its number of digits and BIN 16-bit data are
obtained.
B Function definition =~ BOOL VAL_S_MD (BOOL EN, STRING (8) S1, ANY32 D1, ANY16 D2);

Argument "
Name IN/OUT Description
Execution condition (Function is executed only when the result is
EN N |TRUE)

Data to be converted (character string data)

Remarks: The number of characters in the fraction part of the character
string specified in S1 is 0 to 5 characters. Note that the character string
should be specified within the (total number of digits - 3) or less.

D1 OUT _ [Conversion result (number of digits) (BIN 32-bit data)

D2 OUT [Conversion result (BIN 16-bit data)

Remarks: The digits of a bit device cannot be specified in "D1".

Return Value Description

| BOOL Execution condition

@ Example of use

(* When execution condition X0 turns ON, the character string specified in *)

(* sData is converted into BIN 16-bit data, the number of digits is stored *)

(* into dData, and the BIN data is stored into iData. *)
VAL_S MD (X0, sData, dData, iData);

S1 IN

m @ Corresponding MELSEC command

= VAL (Character string — BIN 16-bit conversion)

5.17.18 Character string— 32-bit BIN conversion DVAL_S_MD
\

The specified character string is converted into BIN 32-bit data, and its number of digits and BIN 32-bit data are
obtained.
B Function definition = BOOL DVAL_S_MD (BOOL EN, STRING(13) S1, ANY32 D1, ANY32 D2);

Argument .
Name IN/OUT Description
Execution condition (Function is executed only when the result is
EN N ITRUE)

Data to be converted (character string data)
Remarks: The number of characters in the fraction part of the character
string specified in S1 is 0 to 5 characters. Note that the character string
should be specified within the (total number of digits - 3) or less.
D1 OUT [Conversion result (number of digits) (BIN 32-bit data)
D2 OUT [Conversion result (BIN 32-bit data)
Remarks: The digits of a bit device cannot be specified in "D1".
Return Value Description
| BOOL Execution condition
@ Example of use
(* When execution condition X0 turns ON, the character string specified *)
(* in sData is converted into BIN 32-bit data,the number of digits is stored into *)
(* dData1, and the BIN data is stored into dData2. *)
DVAL_S_MD (X0, sData, dData1, dData2);

S1 IN

m @ Corresponding MELSEC command

* DVAL (Character string — BIN 32-bit conversion)

For the usable data type, refer to "3.2.2 About
ANY type".

5 MELSEC FUNCTIONS

5.17.19 Floating-point—character string conversion ESTR_M

TN

The specified real number data is converted into a character string according to the specified display

instruction.
M Function definition

BOOL ESTR_M (BOOL EN, REAL S1, ANY16 (3) S2, STRING (24) D);

Argument Name

IN/OUT

Description

EN

IN

Execution condition (Function is executed only when the result is
TRUE)

S1

IN

Data to be converted (real number data)

S2

Display specification of numeric value to be converted

S2 [0] |Display format (0: decimal point format, 1: exponent
format)

S2 [1] [Total number of digits (2 to 24 digits)

When the number of fraction part digits is "0"

..... Number of digits (max.: 24) > 2

When the number of fraction part digits is other than "0"
..... Number of digits (max.: 24) = (number of fraction part
digits + 3)

S2 [2] |Number of fraction part digits (0 to 7 digits)

D

ouT

Conversion result (character string data)

Return Value

Description

BOOL

Execution condition

@ Example of use
(* When execution condition X0 turns ON, the real number data specified in
(* rData is converted into a character string according to the display instruction
(* specified in ArrayData, and the result is stored into sData.
ESTR_M (X0, rData, ArrayData, sData,);

%)
")
")

L1

@ Corresponding MELSEC command
- ESTR (Floating-point data — character string conversion)

5.17.20 Character string—floating-point conversion = EVAL_M

TN

The specified character string is converted into real number data.
BOOL EVAL_M (BOOL EN. STRING (24) S1, REAL D);

B Function definition

Argument Name

IN/OUT

Description

Execution condition (Function is executed only when the result is

EN IN TRUE)
S1 IN Data to be converted (character string data)
D OUT |Conversion result (real number data)

Return Value

Description

BOOL

Execution condition

@ Example of use
(* When execution condition X0 turns ON, the character string specified in
(* sData is converted into real number data, and the result is stored into rData.
EVAL_M (X0, sData, rData);

%)
%)

@ Corresponding MELSEC command
- EVAL (Character string data _ floating-point conversion)

For the usable data type, refer to "3.2.2 About
ANY type".

5 MELSEC FUNCTIONS

5.17.21 BIN— ASCII conversion

ASC_S_MD

TN

The specified BIN 16-bit data is converted into the hexadecimal ASCII data of the specified number of characters.
BOOL ASC_S_MD (BOOL EN, ANY16 S1, ANY16 n, STRING D);

B Function definition

| Argument Name IN/OUT Description

EN IN Execution condition (Function is executed only when the

result is TRUE)

S1 IN Data to be converted (BIN 16-bit data)

n IN Number of characters to be stored (BIN 16-bit data)

D ouT Conversion result (ASCII data)

Return Value Description
BOOL Execution condition
@ Example of use
(* When execution condition X0 turns ON, the BIN 16-bit data specified in *)

* iData1 is converted into hexadecimal ASCII, and the result is stored into the)

(
(* range of the number of characters specified in iData2, starting at the device *)
(* number specified in sData.

ASC_S_MD (X0, iData1, iData2, sData);

L1

@ Corresponding MELSEC command
= ASC (BIN 16-bit data — ASCII conversion)

5.17.22 ASCII—BIN conversion

HEX_S_MD

TN

The hexadecimal ASCII data stored in the specified number of characters is converted into BIN 16-bit data.
BOOL HEX_S_MD (BOOL EN, STRING S1, ANY16n, ANY16 D);

B Function definition

Argument Name INJOUT Description

EN IN Execution condition (Function is executed only when the
result is TRUE)
S1 IN Data to be converted (hexadecimal ASCII data)
n IN Number of characters to be converted (BIN 16-bit data)
D ouT Conversion result (BIN 16-bit data)
Return Value Description
BOOL Execution condition

@ Example of use

(* When execution condition X0 turns ON, the hexadecimal ASCII data stored *

~

in the number of characters specified in iData1, starting at the device number *)

(*
(* specified in sData, is converted into a BIN value, and the result is stored into *)
(*

iData2.

HEX_ S MD (X0, sData, iData1, iData2);

@ Corresponding MELSEC command
- HEX (ASCII — BIN 16-bit conversion)

For the usable data type, refer to "3.2.2 About
ANY type".

5 MELSEC FUNCTIONS

5.17.23 Fetch from character string right side

RIGHT M

TN

n characters of data, starting at the right of the specified character string data (end of the character string), are

acquired.
M Function definition

BOOL RIGHT_M (BOOL EN, STRING S1, ANY16 n, STRING D);

Argument Name IN/OUT Description
EN IN Execution condition (Function is executed only when the
result is TRUE)
S1 IN Data to be acquired (character string data)
n IN Number of characters to be acquired (BIN 16-bit data)
D ouT Acquisition result (n characters of character string data)

Return Value

Description

BOOL

Execution condition

@ Example of use
(* When execution condition X0 turns ON, iData characters of data, starting at *)
(* the right of the character string specified in sData (end of the character string), *)
(* are stored into Result. *)
RIGHT_M (X0, sData, iData, Result);

L1

5.17.24 Fetch from character string left side

@ Corresponding MELSEC command
= RIGHT (Fetch from right side of character string)

LEFT_M

TN

n characters of data, starting at the left of the specified character string data (head of the character string), are

acquired.
M Function definition

BOOL LEFT_M (BOOL EN, STRING S1, ANY16 n, STRING D);

Argument Name IN/OUT Description
EN IN Execution condition (Function is executed only when the
result is TRUE)
S1 IN Data to be acquired (character string data)
n IN Number of characters to be acquired (BIN 16-bit data)
D ouT Acquisition result (n characters of character string data)
Return Value Description
BOOL Execution condition

@ Example of use
(* When execution condition X0 turns ON, iData characters of data, starting at *)
(* the left of the character string specified in sData (head of the character string), *)
(* are stored into Result. *
LEFT_M (X0, sData, iData, Result);

@ Corresponding MELSEC command
- LEFT (Fetch from left side of character string)

For the usable data type, refer to "3.2.2 About
ANY type".

5 MELSEC FUNCTIONS

5.17.25 Any data fetch in character string

MIDR_M

TN

S2[1] characters of data, starting at S2[0] of the specified character data, are acquired.
BOOL MIDR_M (BOOL EN, STRING S1, ANY16(2) S2, STRING D);

B Function definition

Argument Name | IN/OUT

Description

EN IN

Execution condition (Function is executed only when the result is

TRUE)
S1 IN Data to be acquired (character string data)
Position of first character S2[0] [Position of first character
s2 IN and storage destination of | S2[1] |Number of acquired
characters to be acquired characters
(ARRAY [0..1] OF ANY16)
D OUT |Acquisition result (character string data)

Return Value

Description

BOOL

Execution condition

@ Example of use

(* When execution condition X0 turns ON, the data of the number of
(* characters specified in StrArray [1] from the position specified in StrArray [0],
(* starting at the left of the character specified in sData (head of the character *

(* string), are stored into Result.
MIDR_M (X0, sData, StrArray, Result);

*

L1

5.17.26 Any data replacement in character string

@ Corresponding MELSEC command
- MIDR (Any data fetch in character string)

MIDW_M

TN

The data of the number of characters specified in S2[1] are stored into the position, starting at S2[0], of the
specified character string data.
BOOL MIDW_M (BOOL EN, STRING S1, ANY16(S) S2, STRING D);

B Function definition

Argument Name | IN/OUT

Description

Execution condition (Function is executed only when the result is

EN N |TRUE)

S1 IN Data to be acquired (character string data)
Position of first character and |S2 [0] |Position of first character of

S2 IN storage destination of replacement destination
characters to be acquired S2 [1] [Number of acquired
(ARRAY [0..1] OF ANY16) characters

D IN/OUT |Data to be replaced, replacement result (character string data)

Return Value

Description

BOOL

Execution condition

@ Example of use

(* When execution condition X0 turns ON, the data of the number of characters
(* specified in StrArray [1], starting at the left of the character specified in sData
(* (head of the character string), are stored into the position specified in StrArray
(* [0], starting at the left of the character string data stored in sDataZ2.

MIDW_M (X0, sData1, StrArray, sData2);

*

*

*

@ Corresponding MELSEC command

- MIDW (Any data replacement in character string)
For the usable data type, refer to "3.2.2 About

ANY type".

5 MELSEC FUNCTIONS

5.17.27 Character string search

INSTR_M

TN

A searched for the specified character string data is performed, starting at the "n"th character from the left of
the specified character string data.

B Function definition

BOOL INSTR_M (BOOL EN, STRING S1, STRING S2, ANY16 n, ANY16 D);

| Argument Name IN/JOUT Description
EN IN Execu_tion condition (Function is executed only when the
result is TRUE)
S1 IN Data to be searched for (character string data)
S2 IN Data to be searched (character string data)
n IN Search start position (at the "n"th character from left)
(BIN 16-bit data)
D ouT Se_arch result (chgrac_:ter position from head of character
string data specified in S2) (BIN 16-bit data)
Return Value Description
| BOOL Execution condition
@ Example of use
(* When execution condition X0 turns ON, a search for the character string *)

(* specified in sData1 is performed, starting at the iData character from the left of *
(* the character string specified in sData2 (head of the character string),and the *
(* search result is stored into Result.

INSTR_M (X0, sData1, sData2, iData, Result) ;

)
)
)

*

L1

5.17.28 Floating-point—BCD decomposition

@ Corresponding MELSEC command
= INSTR (Character string search)

EMOD_M

TN

The specified real number data is decomposed into the BCD type floating-point format based on the specified

fraction part digits.

M Function definition

BOOL EMOD_M (BOOL EN, REAL S1, ANY16 S2, ANY16(5) D);

| Argument Name | IN/OUT Description
EN IN Execution condition (Function is executed only when the result is
TRUE)
S1 IN Data to be decomposed (real number data)
S2 IN Fraction part digit data (BIN 16-bit data)
BCD-decomposed data D[0] [Sign (positive: 0, negative: 1)
storage destination D[1 -
5 ouT |(ARRAY(0.4] OF ANY16) DEZ} BCD 7 digits
D[3] [Exponent part sign (positive: 0,
negative: 1)
D[4] [BCD exponent

Return Value Description
| BOOL Execution condition
@ Example of use
(* When execution condition X0 turns ON, the real number data specified in *)
(* rData is decomposed into the BCD type floating-point format based on the *)
(* fraction part digits specified in iData, and the result is stored into Result. *)

EMOD_M (X0, rData, iData, Result);

@ Corresponding MELSEC command
- EMOD (Floating-point data — BCD decomposition);

For the usable data type, refer to "3.2.2 About
ANY type".

5 MELSEC FUNCTIONS

5.17.29 BCD format data— floating-point

EREXP_M

TN

The specified BCD type floating-point format data is converted into real number data based on the specified

fraction part digits.
B Function definition

BOOL EREXP_M (BOOL EN, ANY16 S1, ANY16 S2, REAL D);

| Argument Name IN/JOUT Description

EN IN Execution condition (Function is executed only when the
result is TRUE)

1 IN Data to be converted (BCD type floating-point format
data)

S2 IN Fraction part digit data (BIN 16-bit data)

D ouT Conversion result (real number data)

Return Value Description
BOOL Execution condition

@ Example of use

(* When execution condition X0 turns ON, the BCD type floating-point format
(* data specified in iData1 is converted into real number data based on the
(* fraction part digits specified in iData2, and the result is stored into Result.
(* real number data based on the fraction part digits specified in iData2, and
(* the result is stored into Result.

EREXP_M (X0, iData1, iData2, Result);

* * * *
~— ~— ~— ~—

@ Corresponding MELSEC command
- EREXP (BCD format data — floating-point)

For the usable data type, refer to "3.2.2 About
ANY type".

5 MELSEC FUNCTIONS

5.18 Special Functions

5.18.1 Floating-point SIN operation ~ SIN_E_MD

TN

The SIN (sine) value of the specified angle is operated.
B Function definiton =~ BOOL SIN_E_MD (BOOL EN, REAL S1, REAL D);

Argument Name IN/OUT Description

EN N Execution condition (Function is executed only when the
result is TRUE)

S1 N Angle data to be SIN (sine) operated (real number data)
Remarks: Set the specified angle in radian unit (angle X 7z/180).

D ouT Operation result (SIN value) (real number data)

Return Value Description
BOOL Execution condition

@ Example of use
(* When execution condition X0 turns ON, the SIN value of the angle specified *)
(* in rData is calculated, and the result is stored into Result. *)
SIN_E_MD (X0, rData, Result);

m @ Corresponding MELSEC command

- SIN (SIN operation on floating-point data (Single precision))
5.18.2 Floating-point COS operation = COS_E_MD

TN

The COS (cosine) value of the specified angle is operated.
B Function definiton =~ BOOL COS_E_MD (BOOL EN, REAL S1, REAL D);

Argument Name INJOUT Description
EN N Execution condition (Function is executed only when the
result is TRUE)
S1 IN Angle data to be COS (cosine) operated (real number data)
Remarks: Set the specified angle in radian unit (angle X 7/180).
D ouT Operation result (COS value) (real number data)
Return Value Description
BOOL Execution condition
@ Example of use
(* When execution condition X0 turns ON, the COS value of the angle *)
(* specified in rData is calculated, and the result is stored into Result. *)

COS_E_MD (X0, rData, Result)

@ @ Corresponding MELSEC command

= COS (COS operation on floating-point data (Single precision))

5- 88 5- 88

5 MELSEC FUNCTIONS

5.18.3 Floating-point TAN operation = TAN_E_MD

TN

The TAN (tangent) value of the specified angle is operated.
B Function definition =~ BOOL TAN_E_MD (BOOL EN, REAL S1, REAL D);

| Argument Name IN/OUT Description

EN N Execution condition (Function is executed only when the
result is TRUE)
Angle data to be TAN (tangent) operated (real number data)

S1 IN Remarks: Set the specified angle in radian unit (angle X =
/180).

D ouT Operation result (TAN value) (real number data)

Return Value Description
BOOL Execution condition

@ Example of use
(* When execution condition X0 turns ON, the TAN value of the angle specified *)
(* in rData is calculated, and the result is stored into Result. *)
TAN_E_MD (X0, rData, Result);

@ @ Corresponding MELSEC command

= TAN (TAN operation on floating-point data (Single precision))
5.18.4 Floating-point SIN"' operation ~ ASIN_E_MD

TN

The SIN-1 (arcsine) operation of the specified SIN value is performed.
B Function definiton = BOOL ASIN_E_MD (BOOL EN, REAL S1, REAL D);

| Argument Name IN/OUT Description
EN N Execution condition (Function is executed only when the
result is TRUE)
S1 IN Data to be operated, SIN value (-1.0 to 1.0) (real number data)
D ouT Operation result (angle data in radian unit) (real number data)
Return Value Description
BOOL Execution condition

@ Example of use
(* When execution condition X0 turns ON, the angle is operated from the SIN *)
(* value specified in rData, and the result is stored into Result. *)
ASIN_E_MD (X0, rData, Result);

m @ Corresponding MELSEC command

- ASIN (SIN" operation on floating-point data (Single precision))

5- 89 5- 89

5 MELSEC FUNCTIONS

5.18.5 Floating-point COS-'operation =~ ACOS_E_MD
\

The COS-1 (arccosine) operation of the specified COS value is performed.
B Function definition = BOOL ACOS_E_MD (BOOL EN, REAL S1, REAL D);

Argument Name IN/OUT Description
EN N Execution condition (Function is executed only when the
result is TRUE)
S1 IN Data to be operated, COS value (-1.0 to 1.0) (real number data)
D ouT Operation result (angle data in radian unit) (real number data)
Return Value Description
BOOL Execution condition

@ Example of use
(* When execution condition X0 turns ON, the angle is operated from the COS *)
(* value specified in rData, and the result is stored into Result. *)
ACOS_E_MD (X0, rData, Result);

m @ Corresponding MELSEC command

- ACOS (COS" operation on floating-point data (Single precision))

5.18.6 Floating-point TAN-" operation = ATAN_E_MD
\

The TAN-1 (arctangent) operation of the specified TAN value is performed.
B Function definition =~ BOOL ATAN_E_MD (BOOL EN, REAL S1, REAL D);

Argument Name INJOUT Description
EN N Execution condition (Function is executed only when the
result is TRUE)
S1 IN Data to be operated, TAN value (real number data)
D ouT Operation result (angle data in radian unit) (real number data)
Return Value Description
BOOL Execution condition

@ Example of use
(* When execution condition X0 turns ON, the angle is operated from the TAN *)
(* value specified in rData, and the result is stored into Result. *)
ATAN_E_MD (X0, rData, Result);

m @ Corresponding MELSEC command

- ATAN (TAN" operation on floating-point data (Single precision))

5- 90 5-90

5 MELSEC FUNCTIONS

5.18.7 Floating-point angle—radian = RAD_E_MD

TN

The unit of magnitude of the specified angle is converted from the degree unit to the radian unit.
B Function definiton =~ BOOL RAD_E_MD (BOOL EN, REAL S1, REAL D);

Argument Name INJOUT Description

EN IN Execution condition (Function is executed only when the
result is TRUE)

S1 N Data to be converted, angle data in degree unit (real
number data)

D ouT Conversion result (radian unit) (real number data)

Return Value Description
BOOL Execution condition

@ Example of use
(* When execution condition X0 turns ON, the angle data of degree unit specified *)
(* in rData is converted into the radian unit, and the result is stored into Result. *)
RAD_E_MD (X0, rData, Result);

@ @ Corresponding MELSEC command

» RAD (Conversion from floating-point angle to radian (Single precision))

5.18.8 Floating-point radian—angle conversion = DEG_E_MD
\

The unit of magnitude of the specified angle is converted from the radian unit to the degree unit.
B Function definition = BOOL DEG_E_MD (BOOL EN, REAL S1, REAL D);

Argument Name INJOUT Description
EN IN Execution condition (Function is executed only when the
result is TRUE)
S1 IN Data to be converted, radian value data (real number data)
D ouT Conversion result (degree unit) (real number data)
Return Value Description
BOOL Execution condition

@ Example of use
(* When execution condition X0 turns ON, the unit of magnitude of the angle is *)
(* converted from the radian unit to the degree unit, and the result is stored into Result. *)
DEG_E_MD (X0, rData, Result);

@ @ Corresponding MELSEC command

- DEG (Conversion from floating-point radian to angle (Single precision))

5- 91 5- 91

5 MELSEC FUNCTIONS

5.18.9 Floating-point square root SQR_E_MD

TN

The square root of the specified value is operated.
B Function definiton =~ BOOL SQR_E_MD (BOOL EN, REAL S1, REAL D);

Argument Name IN/OUT Description
EN N Execution condition (Function is executed only when the
result is TRUE)
1 N Data to be operated (only positive value can be specified)
(real number data)
D ouT Operation result (real number data)

Remarks: The value to be specified in "S1" is a positive number only.

Return Value Description
BOOL Execution condition

@ Example of use

(* When execution condition X0 turns ON, the square root of the value specified *)

(* in rData is operated, and the result is stored into Result. *)
SQR_E_MD (X0, rData, Result);

@ @ Corresponding MELSEC command

* SQR (Square root operation for floating-point data (Single precision))

5.18.10 Floating-point natural exponential operation EXP_E_MD
\

The base e natural exponent of the specified value is operated.
B Function definition =~ BOOL EXP_E_MD (BOOL EN, REAL S1, REAL D);

Argument Name IN/OUT Description

Execution condition (Function is executed only when the

EN IN .

result is TRUE)
S1 IN Exponent part data to be operated (real number data)
D ouT Operation result (es1) (real number data)

Remarks: Operation is performed on the assumption that the base (e) is "2.71828".

Return Value Description
BOOL Execution condition
@ Example of use
(* When execution condition X0 turns ON, natural exponential operation *)

(* performed using rData as an exponent is, and the result is stored into Result. *)
EXP_E_MD (X0, rData, Result);

m @ Corresponding MELSEC command

- EXP (Exponent operation on floating-point data (Single precision))

5-92 5-92

5 MELSEC FUNCTIONS

5.18.11 Floating-point natural logarithm operation = LOG_E_MD
\

The base e logarithm (natural logarithm) of the specified value is operated.
B Function definiton =~ BOOL LOG_E_MD (BOOL EN, REAL S1, REAL D);

Argument Name IN/OUT Description

EN IN Execution condition (Function is executed only when the
result is TRUE)

S1 IN Data to be operated (only positive value can be
specified) (real number data)

D ouT Operation result (logeS1) (real number data)

Return Value Description
BOOL Execution condition

@ Example of use
(* When execution condition X0 turns ON, the base e logarithm (natural logarithm) *)
(* of the value specified in rData is operated, and the result is stored into Result. *)
LOG_E_MD (X0, rData, Result);

@ @ Corresponding MELSEC command

= LOG (Natural logarithm operation on floating-point data (Single precision))

5.18.12 Random number generation RND_M

\
Random numbers of 0 to 32767 are generated.
B Function definition BOOL RND_M (BOOL EN, ANY16 D);
Argument Name IN/JOUT Description
EN IN Execution condition (Function is executed only when the
result is TRUE)
D ouT Random number generation result (BIN 16-bit data)
Return Value Description
BOOL Execution condition

@ Example of use
(* When execution condition X0 turns ON, random numbers of 0 to 32767 are *)
(* generated and stored into Result. *)
RND_M (X0, Result);

@ @ Corresponding MELSEC command

» RND (Random number generation)

For the usable data type, refer to "3.2.2
About ANY type".

5-93 5- 93

5 MELSEC FUNCTIONS

5.18.13 Sequence change = SRND_M

TN

The random number sequence is changed according to the specified 16-bit BIN data.

B Function definition

BOOL SRND_M (BOOL EN, ANY16 S1);

| Argument Name IN/OUT Description
EN IN Execution condition (Function is executed only when the
result is TRUE)
S1 IN Random number sequence change result (BIN 16-bit
data)
Return Value Description
BOOL Execution condition

@ Example of use
(* When execution condition X0 turns ON, the random number sequence is changed *)
(* according to the 16-bit BIN data stored in the device specified in iData. *)
SRND_M (X0, iData);

L1

@ Corresponding MELSEC command
* SRND (Series updates)

5.18.14 BCD 4-digit square root = BSQR_MD

TN

The square root of the specified BCD 4-digit data is operated.

M Function definition

BOOL BSQR_MD (BOOL EN, ANY16 S1, ANY32 D);

Argument Name INJOUT Description
EN IN Execution condition (Function is executed only when the
result is TRUE)
S1 IN BCD 4-digit data to be operated (BIN 16-bit data)
D ouT Operation result (BIN 32-bit data)
Remarks: The digits of a bit device cannot be specified in "D".
Return Value Description
BOOL Execution condition

@ Example of use
(* When execution condition X0 turns ON, the square root of the value specified *)
(* in iData is operated, and the result is stored into Result. *)
BSQR_MD (X0, iData, dData);

5-94

@ Corresponding MELSEC command
* BSQR (BCD 4-digit square root)

For the usable data type, refer to "3.2.2
About ANY type".

5- 94

5 MELSEC FUNCTIONS

5.18.15 BCD 8-digit square root = BDSQR_MD

TN

The square root of the specified BCD 8-digit data is operated.

B Function definition

BOOL BDSQR_MD (BOOL EN, ANY32 S1, ANY32 D);

| Argument Name IN/OUT Description
EN IN Execution condition (Function is executed only when the
result is TRUE)
S1 IN BCD 8-digit data to be operated (BIN 32-bit data)
D ouT Operation result (BIN 32-bit data)
Remarks: The digits of a bit device cannot be specified in "D".
Return Value Description
BOOL Execution condition

@ Example of use
(* When execution condition X0 turns ON, the square root of the value specified in ~ *)
(* dData is operated, and the result is stored into Resullt. *)
BDSQR_MD (X0, dData, Result);

L1

@ Corresponding MELSEC command
* BDSQR (BCD 8-digit square root)

5.18.16 BCD type SIN operation BSIN_MD

TN

The BCD 4-digit data of the specified angle is SIN (sine) operated.

B Function definition

BOOL BSIN_MD (BOOL EN, ANY16 S1, ANY16(3) D);

| Argument Name IN/JOUT Description
EN IN Execution condition (Function is executed only when the
result is TRUE)
S1 IN Data to be operated (BCD 4-digit data)
Operation result | D [0] [Sign (positive: 0, negative: 1)

D ouT (ARRAY [0..2] OF | D [1] |Integer part (BCD 4-digit data)

ANY16) D [2] |Fraction part (BCD 4-digit data)
Return Value Description
BOOL Execution condition

@ Example of use
(* When execution condition X0 turns ON, the SIN value of the angle specified in iData is *)
(* operated, the sign of the operation result is stored into ArrayData [0], the integer part of *)
(* the operation result into ArrayData [1], and the fraction part into ArrayData [2]. *)
BSIN_MD (X0, iData, ArrayData);

5-95

@ Corresponding MELSEC command
* BSIN (BCD type SIN operation)

For the usable data type, refer to "3.2.2
About ANY type".

5- 95

5 MELSEC FUNCTIONS

5.18.17 BCD type COS operation = BCOS_MD

TN

The BCD 4-digit data of the specified angle is COS (cosine) operated.

H Function definition

BOOL BCOS_MD (BOOL EN, ANY16 S1, ANY16(3) D);

Argument Name IN/OUT Description
EN IN Execution condition (Function is executed only when the
result is TRUE)
S1 IN Data to be operated (BCD 4-digit data)
Operation result | D [0] [Sign (positive: 0, negative: 1)

D ouT (ARRAY [0..2] OF | D [1] |Integer part (BCD 4-digit data)

ANY16) D [2] |Fraction part (BCD 4-digit data)
Return Value Description
BOOL Execution condition

@ Example of use
(* When execution condition X0 turns ON, the COS value of the angle specified in iData is *)
(* operated, the sign of the operation result is stored into ArrayData [0], the integer part of *)
(* the operation result into ArrayData [1], and the fraction part into ArrayData [2]. *)
BCOS_MD (X0, iData, ArrayData);

L1

@ Corresponding MELSEC command
- BCOS (BCD type COS operation)

5.18.18 BCD type TAN operation = BTAN_MD

TN

The BCD 4-digit data of the specified angle is TAN (tangent) operated.

M Function definition

BOOL BTAN_MD (BOOL EN, ANY16 S1, ANY16(3) D);

Argument Name IN/OUT Description
EN IN Execution condition (Function is executed only when the
result is TRUE)
S1 IN Data to be operated (BCD 4-digit data)
Operation result | D [0] [Sign (positive: 0, negative: 1)

D ouT (ARRAY [0..2] OF | D [1] |Integer part (BCD 4-digit data)

ANY16) D [2] |Fraction part (BCD 4-digit data)
Return Value Description
BOOL Execution condition

@ Example of use
(* When execution condition X0 turns ON, the TAN value of the angle specified in iData is *)
(* operated, the sign of the operation result is stored into ArrayData [0], the integer part of *)
(* the operation result into ArrayData [1], and the fraction part into ArrayData [2]. *)
BTAN_MD (X0, iData, ArrayData);

5- 96

@ Corresponding MELSEC command
- BTAN (BCD type TAN operation)

For the usable data type, refer to "3.2.2
About ANY type".

5- 96

5 MELSEC FUNCTIONS

5.18.19 BCD type SIN-' operation BASIN_MD

TN

The SIN-1 (arcsine) value of the specified BCD value is operated.
B Function definiton =~ BOOL BASIN_MD (BOOL EN, ANY16(3) S1, ANY16 D);

Argument Name IN/OUT Description
EN IN Execution condition (Function is executed only when the
result is TRUE)
Operation result | S [0] |Sign (positive: 0, negative: 1)
S1 IN (ARRAY [0..2] OF | S [1] [Integer part (BCD 4-digit data)
ANY16) S [2] |Fraction part (BCD 4-digit data)
D ouT Operation result (head number of device) (BCD 4-digit data)
Return Value Description
BOOL Execution condition

@ Example of use
(* When execution condition X0 turns ON, the SIN-1 value of the value specifiedin ~ *)
(* BasinArrayData is operated, and the result is stored into Result.)
BASIN_MD (X0, BasinArrayData, Result);

m @ Corresponding MELSEC command

* BASIN (BCD type SIN-1 operation)
5.18.20 BCD type COS-'operation = BACOS_MD

TN

The COS-1 (arccosine) value of the specified BCD value is operated.
B Function definiton =~ BOOL BACOS_MD (BOOL EN, ANY16(3) S1, ANY16 D);

Argument Name INJOUT Description

Execution condition (Function is executed only when the
result is TRUE)

Data to be COS-1 [S [0] |Sign (positive: 0, negative: 1)
(arccosine) operated| S [1] |Integer part (BCD 4-digit data)

EN IN

S1 IN
(ARRAY [0..2] OF S [2] |Fracti rt (BCD 4-digit dat
ANY16) [2] [Fraction part (-digit data)
D ouT Operation result (head number of device) (BCD 4-digit data)
Return Value Description
BOOL Execution condition

@ Example of use
(* When execution condition X0 turns ON, the COS-1 value of the value specified *)
(* in BacosArrayData is operated, and the result is stored into Result. *)
BACOS_MD (X0, BacosArrayData, Result);

@ @ Corresponding MELSEC command

* BACOS (BCD type COS-1 operation)

For the usable data type, refer to "3.2.2
About ANY type".

5-97 5- 97

5 MELSEC FUNCTIONS

5.18.21 BCD type TAN-" operation

BATAN_MD

TN

The TAN-1 (arctangent) value of the specified BCD value is operated.
BOOL BATAN_MD (BOOL EN, ANY16(3) S1, ANY16 D);

W Function definition

| Argument Name IN/JOUT Description
EN IN Execution condition (Function is executed only when the
result is TRUE)
Head number of | S [0] |Sign (positive: 0, negative: 1)
device that stores | S [1] |Integer part (BCD 4-digit data)
S1 IN data to be operated
(ARRAY [0..2] OF | S [2] |Fraction part (BCD 4-digit data)
ANY16)
D ouT Operation result (BCD 4-digit data)

Return Value

Description

BOOL

Execution condition

@ Example of use

(* When execution condition X0 turns ON, the TAN-1 value of the value specified in *)
(* BatanArrayData is operated, and the result is stored into Result.)
BATAN_MD (X0, BatanArrayData, Result);

5-98

@ Corresponding MELSEC command
* BATAN (BCD type TAN-1 operation)

For the usable data type, refer to "3.2.2
About ANY type".

5- 98

5 MELSEC FUNCTIONS

5.19 Data Control

5.19.1 Upper/lower limit control ~ LIMIT_MD

TN

The output value is controlled depending on whether the specified BIN 16-bit data is within the upper/lower limit

value range or not.
B Function definition

BOOL LIMIT_MD (BOOL EN, ANY16 S1, ANY16 S2, ANY16 S3, ANY16 D);

Argument Name IN/JOUT Description
EN IN Execution condition (Function is executed only when the
result is TRUE)
S1 IN Lower limit value (BIN 16-bit data)
S2 IN Upper limit value (BIN 16-bit data)
S3 IN Input value (BIN 16-bit data)
D ouT Output value (BIN 16-bit data)

Remarks: The output value is controlled as described below.
When S1 (lower limit value) > S3 (input value)
... S1 (lower limit value) — D (output value)
When S2 (upper limit value) < S3 (input value)
... S2 (upper limit value) — D (output value)
When S1 (lower limit value) < S3 (input value) < S2 (upper limit value)
.. S3 (input value) — D (output value)

Return Value Description

BOOL Execution condition

@ Example of use
(* When execution condition X0 turns ON, the output value is stored into Result *)
(* depending on whether or not the input value specified in iData3 is within the *)
(* per/lower limit value range specified in iData1 and iData 2. *
LIMIT_MD (X0, iData1, iData2, iData3, Result);

5-99

@ Corresponding MELSEC command
« LIMIT (16-bit upper/lower limit control)

For the usable data type, refer to "3.2.2
About ANY type".

5-99

5 MELSEC FUNCTIONS

5.19.2 32-bit data upper/lower limit control ~ DLIMIT_MD
\

The output value is controlled depending on whether the specified BIN 32-bit data is within the upper/lower limit
value range or not.
B Function definiton =~ BOOL DLIMIT_MD (BOOL EN, ANY32 S1, ANY32 S2, ANY32 S3, ANY32 D);

Argument Name INJOUT Description
EN IN Execution condition (Function is executed only when the
result is TRUE)
S1 IN Lower limit value (BIN 32-bit data)
S2 IN Upper limit value (BIN 32-bit data)
S3 IN Input value (BIN 32-bit data)
D ouT Output value (BIN 32-bit data)

Remarks: The output value is controlled as described below.
When S1 (lower limit value) > S3 (input value)
... S1 (lower limit value) — D (output value)
When S2 (upper limit value) < S3 (input value)
... S2 (upper limit value) — D (output value)
When S1 (lower limit value) < S3 (input value) < S2 (upper limit value)
.. S3 (input value) — D (output value)

Return Value Description

BOOL Execution condition

@ Example of use
(* When execution condition X0 turns ON, the output value is stored into Result *)
(* depending on whether or not the input value specified in dDatag3 is within the *)
(* upper/lower limit value range specified in dData1 and dData 2. *)
DLIMIT_MD (X0, dData1, dData2, dData3, Result);

@ @ Corresponding MELSEC command

= DLIMIT (32-bit upper/lower limit control)

For the usable data type, refer to "3.2.2
About ANY type".

5-100 5- 100

5 MELSEC FUNCTIONS

5.19.3 Dead band control BAND_MD

TN

The output value is controlled depending on whether the specified BIN 16-bit data is within the upper/lower limit
range of the specified dead band or not.
B Function definition = BOOL BAND_MD (BOOL EN, ANY16 S1, ANY16 S2, ANY16 S3, ANY16 D);

Argument Name INJOUT Description
EN IN Execution condition (Function is executed only when the
result is TRUE)
S1 IN Lower limit value data of dead band (BIN 16-bit data)
S2 IN Upper limit value data of dead band (BIN 16-bit data)
S3 IN Input value (BIN 16-bit data)
D ouT Output value (BIN 16-bit data)

Remarks: The output value is controlled as described below.
When S1 (lower limit value) > S3 (input value)
............................ S3 (input value) - S1 (lower limit value) — D (output value)
When S2 (upper limit value) < S3 (input value)
............................ S3 (input value) - S2 (upper limit value) — D (output value)
When S1 (lower limit value) < S3 (input value) < S2 (upper limit value)
.. 0 — D (output value)

Return Value Description

BOOL Execution condition

@ Example of use
(* When execution condition X0 turns ON, the output value is stored into Result *)
(* depending on whether or not the input value specified in iData3 is within the *)
(* upper/lower limit range of the dead band specified in iData1 and iData2.)
BAND_MD (X0, iData1, iData2, iData3, Result);

@ @ Corresponding MELSEC command

= BAND (16-bit dead band control)

For the usable data type, refer to "3.2.2
About ANY type".

5-101 5- 101

5 MELSEC FUNCTIONS

5.19.4 32-bit data dead band control DBAND_MD

TN

The output value is controlled depending on whether the specified BIN 32-bit data is within the upper/lower limit
range of the specified dead band or not.
B Function definition = BOOL DBAND_MD (BOOL EN, ANY32 S1, ANY32 S2, ANY32 S3, ANY32 D);

Argument Name INJOUT Description
EN IN Execution condition (Function is executed only when the
result is TRUE)
S1 IN Lower limit value data of dead band (BIN 32-bit data)
S2 IN Upper limit value data of dead band (BIN 32-bit data)
S3 IN Input value (BIN 32-bit data)
D ouT Output value (BIN 32-bit data)

Remarks: The output value is controlled as described below.
When S1 (lower limit value) > S3 (input value)
............................ S3 (input value) - S1 (lower limit value) — D (output value)
When S2 (upper limit value) < S3 (input value)
............................ S3 (input value) - S2 (upper limit value) — D (output value)
When S1 (lower limit value) < S3 (input value) < S2 (upper limit value)
.. 0 — D (output value)

Return Value Description

BOOL Execution condition

@ Example of use
(* When execution condition X0 turns ON, the output value is stored into Result *)
(* depending on whether or not the input value specified in iData3 is within the *)
(* upper/lower limit range of the dead band specified in iData1 and iData2.)
DBAND_MD (X0, dData1, dData2, dData3, Result);

@ @ Corresponding MELSEC command

- DBAND (32-bit dead band control)

For the usable data type, refer to "3.2.2
About ANY type".

5- 102 5- 102

5 MELSEC FUNCTIONS

5.19.5 Bit zone control ZONE_MD

TN

The output value is zone-controlled with a bias value added to the specified BIN 16-bit data.

B Function definition

5- 103

BOOL ZONE_MD (BOOL EN, ANY16 S1, ANY16 S2, ANY16 S3, ANY16 D);

| Argument Name IN/OUT Description

EN N Execution condition (Function is executed only when the
result is TRUE)

1 N Negative bias value added to input value (BIN 16-bit
data)

S2 IN Positive bias value added to input value (BIN 16-bit data)

S3 IN Input value (BIN 16-bit data)

D ouT Output value (BIN 16-bit data)

Remarks: The output value is controlled as described below.
When S3 (input value) < 0
...................... S3 (input value) + S1 (negative bias value) — D (output value)
When S3 (input value) = 0ccooeeieiiiiiieeeeee e 0 — D (output value)
When S3 (input value) > 0
....................... S3 (input value) + S1 (positive bias value) — D (output value)

Return Value Description

BOOL Execution condition

@ Example of use
(* When execution condition X0 turns ON, the bias value specified in iData1 or *)
(* iData2 is added to the input value specified in iData3, and the result is stored *)
(* into Result. *)
ZONE_MD (X0, iData1, iData2, iData3, Result);

@ Corresponding MELSEC command
= ZONE (16-bit zone control)

For the usable data type, refer to "3.2.2
About ANY type".

5- 103

5 MELSEC FUNCTIONS

5.19.6 32-bit data bit zone control DZONE_MD

TN

The output value is zone-controlled with a bias value added to the specified BIN 32-bit data.

B Function definition

5- 104

BOOL DZONE_MD (BOOL EN, ANY32 S1, ANY32 S2, ANY32 S3, ANY32 D);

| Argument Name IN/OUT Description

EN N Execution condition (Function is executed only when the
result is TRUE)

S1 N Negative bias value added to input value (BIN 32-bit
data)

S2 IN Positive bias value added to input value (BIN 32-bit data)

S3 IN Input value (BIN 32-bit data)

D ouT Output value (BIN 32-bit data)

Remarks: The output value is controlled as described below.
When S3 (input value) < 0
...................... S3 (input value) + S1 (negative bias value) — D (output value)
When S3 (input value) = 0ccooeeieiiiiiieeeeee e 0 — D (output value)
When S3 (input value) > 0
....................... S3 (input value) + S1 (positive bias value) — D (output value)

Return Value Description

BOOL Execution condition

@ Example of use
(* When execution condition X0 turns ON, the bias value specified in iData1 or *)
(* iData2 is added to the input value specified in iData3, and the result is stored *)
(* into Result. *)
DZONE_MD (X0, dData1, dData2, dData3, Result);

@ Corresponding MELSEC command
* DZONE (32-bit zone control)

For the usable data type, refer to "3.2.2
About ANY type".

5- 104

5 MELSEC FUNCTIONS

5.19.7 File register block No. switching ~RSET_MD

TN

The block No. of the file registers used in a program is changed into the specified block No.

B Function definition

BOOL RSET_MD (BOOL EN, ANY16 S1);

| Argument Name IN/OUT Description
EN IN Execution condition (Function is executed only when the
result is TRUE)
S1 IN New block No. data (BIN 16-bit data)
Return Value Description
BOOL Execution condition

@ Example of use
(* When execution condition X0 turns ON, the block No. of the file registers used *)
(* in the program is changed into the block No. stored in the device specified in iData. *)
RSET_MD (X0, iData);

L1

@ Corresponding MELSEC command
* RSET (File register block No. switching)

5.19.8 Set of file register fle QDRSET_M

TN

The file name of the file registers used in a program is changed into the specified file name.

B Function definition

BOOL QDRSET_M (BOOL EN, STRING S1);

| Argument Name IN/JOUT Description
EN IN Execution condition (Function is executed only when the
result is TRUE)
1 IN "Drive No.: File name" of target file registers (character
string data)
Return Value Description
BOOL Execution condition

@ Example of use
(* When execution condition X0 turns ON, the file name of the file registers of *)
(* drive No. 1 is changed into "ABS.QDR". *)
QDRSET_M (X0, "1: ABC");

5- 105

@ Corresponding MELSEC command
- QDRSET (Set of file register file)

For the usable data type, refer to "3.2.2
About ANY type".

5- 105

5 MELSEC FUNCTIONS

5.19.9 Set of comment file QCDSET_M

TN

The file name of the comment file used in a program is changed into the specified file name.
B Function definiton = BOOL QDRSET_M (BOOL EN, STRING S1);

| Argument Name IN/OUT Description
EN IN Execution condition (Function is executed only when the
result is TRUE)
1 IN "Drive No.: File name" of target comment file (character
string data)
Return Value Description
BOOL Execution condition

@ Example of use
(* When execution condition X0 turns ON, the file name of the comment file of *)
(* drive No. 3 is changed into "DEF.QCD". *)
QCDSET_M (X0, "3: DEF");

m @ Corresponding MELSEC command

* QCDSET (Set of comment file)

5- 106 5- 106

5 MELSEC FUNCTIONS

5.20 Clock

5.20.1 Read of clock data DATERD_MD

TN

The "year, month, day, hour, minute, second, day of week" is read from the clock element of the QCPU/LCPU.
They are stored into the specified destination as BIN values.
B Function definition BOOL DATERD_MD (BOOL EN, ANY16(7) S);

| Argument Name IN/OUT Description
EN IN Execution condition (Function is executed only when the
result is TRUE)
D [0] [Year (1980 to 2079)
D [1] [Month (1to 12)
Read clock data D[2] |Day (1to31)
D ouT (ARRAY [0..6] D [3] [Hour (0 to 23)

OF ANY16) D [4] |Minute (0 to 59)
D [5] [Second (0 to 59)
D [6] [Day of week (0 to 6)

Return Value Description
BOOL Execution condition

@ Example of use

(* When execution condition X0 turns ON, the "year, month, day, hour, minute, *)
(* second, day of week" are read from the clock element of the QCPU/LCPU,)
(* and stored into the device specified in TimeData as BIN values. *)

DATERD_MD (X0, TimeData);

@ @ Corresponding MELSEC command

- DATERD (Read of clock data)

5- 107

About ANY type".

For the usable data type, refer to "3.2.2

5- 107

5 MELSEC FUNCTIONS

5.20.2 Write of clock data

DATEWR_MD

TN

The clock data "year, month, day, hour, minute, second, day of week" are written to the clock element of the

QCPU/LCPU.
W Function definition

BOOL DATEWR_MD (BOOL EN, ANY16(7) S);

Argument Name INJOUT Description
EN IN Execution condition (Function is executed only when the
result is TRUE)
S[0] [Year (1980 to 2079)
S[1] [Month (1to 12)
Clock data to be
) S[2] [Day (1to 31)
written
S IN S[3] [Hour (0 to 23)
(ARRAY [0..6] :
OF ANY16) S [4] [Minute (0 to 59)
S [5] [Second (0 to 59)
S [6] [Day of week (0 to 6)
Return Value Description

BOOL

Execution condition

@ Example of use

(* When execution condition X0 turns ON, the clock data stored in TimeData are *)
(* written to the clock element of the QCPU/LCPU. *)
DATEWR_MD (X0, TimeData);

5- 108

@ Corresponding MELSEC command
- DATEWR (Write of clock data)

For the usable data type, refer to "3.2.2
About ANY type".

5- 108

5 MELSEC FUNCTIONS

5.20.3 Addition of clock data DATEPLUS_M

TN

The specified time data is added to the specified time-of-day data.
B Function definiton =~ BOOL DATEPLUS_M (BOOL EN, ANY16(3) S1, ANY16(3) S2, ANY16(3) D);

Argument Name IN/OUT Description

Execution condition (Function is executed only when the
result is TRUE)

Time-of-day data to S1[0] [Hour (0 to 23)
S1 IN which data will be added| S1 [1] [Minute (0 to 59)
(ARRAY[0.2] OF ANY16)| S1 [2] |Second (0 to 59)

Time data that will be | S2[0] |Hour (0 to 23)
S2 IN added to data (ARRAY| S2[1] |[Minute (0 to 59)

[0..2] OF ANY16) S2[2] |Second (0 to 59)
Addition result time-of-| D [0] |Hour (0 to 23)

D ouT day data (ARRAY D [1] |Minute (0 to 59)
[0..2] OF ANY16) D[2] |Second (0 to 59)

EN IN

Return Value Description
BOOL Execution condition

@ Example of use

(* When execution condition X0 turns ON, the time data specified in TimeData2 *)

(* is added to the time-of-day data specified in TimeData1, and the addition *)

(* result is stored into Result. *)
DATEPLUS_M (X0, TimeData1, TimeData2, Result);

m @ Corresponding MELSEC command

- DATE+ (Addition of clock data)

For the usable data type, refer to "3.2.2
About ANY type".

5-109 5- 109

5 MELSEC FUNCTIONS

5.20.4 Subtraction of clock data DATEMINUS_M

TN

The specified time data is subtracted from the specified time-of-day data.
B Function definiton =~ BOOL DATEMINUS_M (BOOL EN, ANY16(3) S1, ANY16(3) S2, ANY16(3) D);

| Argument Name IN/OUT Description
EN IN Execution condition (Function is executed only when the
result is TRUE)
Time-of-day data from | S1 [0] |Hour (0 to 23)
51 IN which data will be S1[1] [Minute (0 to 59)
subtracted (ARRAY [0..2]
OF ANY16) S1[2] |Second (0 to 59)
Time data that will be | S2[0] [Hour (0 to 23)
s2 IN subtracted from data | S2[1] |Minute (0 to 59)
(ARRAY [0..2] OF
ANY16) S2[2] |Second (0 to 59)
Subtraction result D [0] [Hour (0 to 23)
D ouT time-of-day data D [1] [Minute (O to 59)
(ARRAY [0..2] OF
ANY16) D[2] [Second (0 to 59)
Return Value Description
BOOL Execution condition

@ Example of use
(* When execution condition X0 turns ON, the time data specified in TimeData2 *)
(* is subtracted from the time-of-day data specified in TimeData1, and the *)
(* subtraction result is stored into Result. *)
DATEMINUS_M (X0, TimeData1, TimeData2, Result);

m @ Corresponding MELSEC command

* DATE- (Subtraction of clock data)

For the usable data type, refer to "3.2.2
About ANY type".

5-110 5- 110

5 MELSEC FUNCTIONS

The specified time data is converted into second.

B Function definition

5.20.5 Clock data format conversion (hour, minute, second—second) @ SECOND M
\
BOOL SECOND_M (BOOL EN, ANY16(3) S, ANY32 D);
Argument Name IN/OUT Description
EN IN Execution condition (Function is executed only when the
result is TRUE)
Clock data to be S[0] [Hour (0 to 23)
S IN converted (ARRAY S[1] [Minute (0 to 59)
[0..2] OF ANY16) S[2] |Second (0 to 59)
D ouT Conversion result clock data (second) (BIN 32-bit data)
Return Value Description
BOOL Execution condition

@ Example of use

(* When execution condition X0 turns ON, the time data specified in TimeData *)
(* is converted into second, and the result is stored into Result. *)
SECOND_M (X0, TimeData, Result);

L1

@ Corresponding MELSEC command
- SECOND (Clock data format conversion)

B Function definition

5.20.6 Clock data format conversion (second—hour, minute, second) = HOUR_M
TN
The specified data in second is converted into hour, minute, second.
BOOL HOUR_M (BOOL EN, ANY32 S1, ANY16(3) D);
Argument Name INJOUT Description
EN IN Execution condition (Function is executed only when the
result is TRUE)
S1 IN Clock data to be converted (second) (BIN 32-bit data)
Conversion result D [0] |Hour (O to 23)
D ouT clock data (ARRAY D [1] [Minute (0 to 59)
[0..2] OF ANY16) | D[2] [Second (O to 59)

Return Value

Description

BOOL

Execution condition

@ Example of use

(* When execution condition X0 turns ON, the data in second specified in dData *)
(* is converted into hour, day, second, and the result is stored into Result. *)
HOUR_M (X0, dData, TimeData);

5- 111

@ Corresponding MELSEC command
- HOUR (Clock data format conversion)

For the usable data type, refer to "3.2.2
About ANY type".

5- 111

5 MELSEC FUNCTIONS

5.21 Program Control

5.21.1 Program standby = PSTOP_M

TN

The program of the specified file name is put in a standby status.

M Function definition

BOOL PSTOP_M (BOOL EN, STRING S1);

Argument Name INJOUT Description
EN N Execution condition (Function is executed only when the
result is TRUE)
S1 N File name of program to be put in standby status

(character string data)

Remarks: Only the program stored in the program memory (drive No.: 0) can be
placed in a standby status.

Return Value Description
BOOL Execution condition
@ Example of use
(* When execution condition X0 turns ON, the program whose file name is *)
(* "ABC" is placed in a standby status. *)

PSTOP_M (X0, "ABC");

L1

@ Corresponding MELSEC command
- PSTOP (Program standby command)

5.21.2 Program output OFF standby = POFF_M

TN

The program of the specified file name is brought into non-execution and put in a standby status.

M Function definition

BOOL POFF_M (BOOL EN, STRING S1);

Argument Name INJOUT Description

Execution condition (Function is executed only when the

EN IN
result is TRUE)

S1 N File name of program to be brought into non-execution

and put in a standby status (character string data)

Remarks: Only the program stored in the program memory (drive No.: 0) can be
brought into non-execution and placed in a standby status.

Return Value Description
BOOL Execution condition
@ Example of use
(* When execution condition X0 turns ON, the program whose file name is *)
(* "ABC" is brought into non-execution and placed in a standby status. *)

POFF_M (X0, sData);

5-112

@ Corresponding MELSEC command
* POFF (Program output OFF standby command)

5- 112

5 MELSEC FUNCTIONS

5.21.3 Program scan execution registration =~ PSCAN_M

TN

The program of the specified file name is put in a scan execution status.

B Function definition

BOOL PSCAN_M (BOOL EN, STRING S1);

Argument Name IN/OUT Description
EN N Execution condition (Function is executed only when the
result is TRUE)
S1 N File name of program to be put in scan execution status

(character string data)

Remarks: Only the program stored in the program memory (drive No.: 0) can be
placed in a scan execution status.

Return Value Description
BOOL Execution condition
@ Example of use
(* When execution condition X0 turns ON, the program whose file name is *)
(* "ABC" is placed in a scan execution status. *)

PSCAN_M (X0, sData);

L1

@ Corresponding MELSEC command
- PSCAN (Program scan execution registration command)

5.21.4 Program low-speed execution registration =~ PLOW_M

TN

The program of the specified file name is put in a low-speed execution status.

B Function definition

BOOL PLOW_M (BOOL EN, STRING S1);

Argument Name INJOUT Description

Execution condition (Function is executed only when the

EN IN
result is TRUE)

S1 N File name of program to be put in low-speed execution

status (character string data)

Remarks: Only the program stored in the program memory (drive No.: 0) can be
placed in a low-speed execution status.

Return Value Description
BOOL Execution condition
@ Example of use
(* When execution condition X0 turns ON, the program whose file name is *)
(* "ABC" is placed in a low-speed execution status. *)

PLOW_M (X0, "ABC");

5- 113

@ Corresponding MELSEC command
* PLOW (Program low-speed execution registration instruction)

5- 113

5 MELSEC FUNCTIONS

5.22 Others

5.22.1 WDT reset

WDT_M

The watchdog timer is reset in a sequence program.
BOOL WDT _M (BOOL EN);

M Function definition

5-114

Argument Name INJOUT Description
EN IN Execution condition (Function is executed only when the
result is TRUE)
Return Value Description
BOOL Execution condition
@ Example of use
(* When execution condition X0 turns ON, the watchdog timer is reset in the ")
(* sequence program. *
WDT_M (X0);
@ Corresponding MELSEC command
- WDT (Watchdog timer reset)
5-114

6 |EC FUNCTIONS

6 IEC FUNCTIONS

How the functions are described

This manual describes the function definitions, arguments, return values and using
examples of the IEC functions.

The IEC functions are created by combining the MELSEC common instructions. For
the applicable devices of the IEC functions, the errors that may occur during execution
of the functions, and the applicable CPU types, refer to the "MELSEC-Q/L
Programming Manual (Common Instructions)". The reference section is the section
described in "Used Instructions" in the "@ Example of use" table field.

6.1.6 Double precision integer type (DINT)—real number type (REAL) conversion DINT_TO_REAL

DINT_TO REAL E

m Function definition

\

Double precision integer type (DINT) data is converted into real number type (REAL) data. — 1)

REAL DINT_TO_REAL { DINT $1);
2) 3) 4) 5)
@® Argument— 6)

Argument Name IN/QUT Description
S1 IN Data to be converted (BIN 32-bit data)

@ Return value—— 7)

Return Value Description

REAL Conversion result (real number data)

@ Example of use — 8)

Argument Type ST Program Conversion Result Used Instruction
DINT r_datal := LD SM400 LD,DFLT
DINT_TO_REAL(di_data1); |DFLT di_data1
r_datai

v
v v

9) 10) 11)

1) Indicates the function of the function.

2) Indicates the data type of the function.

3) Indicates the function name.

4) Indicates the data type of the argument. (The STRING type is represented
STRING (number of characters). It is represented STRING(6) when the
number of characters is 6.)

5) Indicates the argument name.

6) Indicates the list (argument name, IN/OUT, description) of arguments used
with the function.

7) Indicates the list (return value name, description) of return values used with
the function.

8) Indicates the example of using the function. (Indicates the example that uses
the actual device/label.)

9) This example is the one that uses a REAL type (real number type) label.

10) This example is the one that uses a DINT type (double word type) label.

11) Indicates the QCPU (Q mode)/L MELSEC common instruction corresponding

to the function.

6 |EC FUNCTIONS
L]

The following indicates the correspondences between the MELSEC instruction in the
"MELSEC-Q/L Programming Manual (Common Instructions)" and the IEC function in

this manual.

MELSEC-Q/L Programming Manual (Common Instructions) [MELSEC instruction]

6.3.3 Conversion from BIN 16 and 32-bit data to floating decimal ~ —1
point (Single precision) (FLT(P),DFLT(P))

e omemE -

Basic model QCPU: The upper five digits of the serial No. are "04122" or larger.

[lindicates an instruction symbol of FLT/DFLT.

Command
FLT, DFLT] N L O 1 & | © }—{

Command
FLTP, DFLTP [| T ® | @ }—{

(® : Integer data to be converted to 32-bit floating decimal point data or head number of the devices where the
integer data is stored (BIN 16/32 bits)

© : Head number of the devices where the converted 32-bit floating decimal point data will be stored

Constants
Other - 3)
O

(real number)

® O O O
© - (@) — @) O*1 -

*1:Available only in multiple Universal model QCPU and LCPU

[IEC function] in this manual

@ Example of use

Argument Type ST Program Conversion Result Used Instruction
DINT r_datal := LD SM400 LD,DFLT
DINT_TO_REAL(di_datal); |DFLT di_data1
r_data1 4)

1) MELSEC instruction reference destination
2) Applicable CPU types
CPU types that can use the instructions are indicated.
3) Applicable devices
4) MELSEC common instructions to be referred to

6 |EC FUNCTIONS

6.1 Type Conversion Functions

6.1.1 Boolean type (BOOL)—double precision integer type (DINT) conversion BOOL_TO_DINT
BOOL_TO DINT_E

TN

The specified Boolean type (BOOL) data is converted into double precision integer type (DINT) data.

W Function definition

W Function definition

DINT BOOL_TO_DINT(BOOL S1);

@ Argument
Argument Name IN/OUT Description
S1 IN Data to be converted (bit data)
@ Return value
Return Value Description
DINT Conversion result (BIN 32-bit data)
Remarks: The data to be converted (bit data) is stored into the least significant bit of
the return value.

@ Example of use

Argument Type ST Program Conversion Result Used Instruction
BOOL di_datat := LD b_data1 LD, DMOV, LDI
BOOL_TO_DINT(b_data1); |DMOV K1
di_data1
LDI b_data1
DMOV KO
di_data1
BOOL BOOL_TO_DINT_E(BOOL EN, BOOL S1, DINT D1);
@ Argument
Argument Name IN/OUT Description
EN IN Execution condition (Function is executed only when the result is TRUE)
S1 IN Data to be converted (bit data)
D1 ouT Conversion result (BIN 32-bit data)

@ Return value

Return Value

Description

BOOL

Execution condition

@ Example of u

se

(* When execution condition X0 turns ON, the Boolean type data in bData is
(* converted into double precision integer type (DINT) data, and the result is
(* stored into Result.

MO := BOOL_TO _DINT_E (X0, bData, Result) ;

“)
%)
)

6 |EC FUNCTIONS

6.1.2 Boolean type (BOOL)—integer type (INT) conversion

BOOL_TO_INT

BOOL_TO_INT_E

\
Boolean type (BOOL) data is converted into integer type (INT) data.
B Function definition INT BOOL_TO_INT (BOOL S1);
@ Argument
Argument Name IN/OUT Description
S1 IN Data to be converted (bit data)
@ Return value
Return Value Description
INT Conversion result (BIN 16-bit data)

W Function definition

Remarks: The data to be converted (bit data) is stored into the least significant bit of
the return value.

@ Example of use

Argument Type ST Program Conversion Result Used Instruction
INT D50 :=BOOL_TO_INT(M100 |LD M100 LD, MOV, LDI
); MOV K1 D50
LDI M100
MOV KO D50
BOOL BOOL_TO_INT_E(BOOL EN, BOOL S1, INT D1);
@ Argument
Argument Name IN/OUT Description
EN IN Execution condition (Function is executed only when the result is TRUE)
S1 IN Data to be converted (bit data)
D1 OouUT Conversion result (BIN 16-bit data)

@ Return value

Return Value

Description

BOOL

Execution condition

@ Example of use

(* When execution condition X0 turns ON, the Boolean type (BOOL) in bData is *)
(* converted into the integer type (INT), and the result is stored into Result. *)
MO := BOOL_TO _INT_E (X0, bData, Result) ;

6 |EC FUNCTIONS

6.1.3 Boolean type (BOOL)— character string type (STRING) conversion BOOL_TO_STR

BOOL_TO STR E

TN

Boolean type (BOOL) data is converted into character string type (STRING) data.

W Function definition

W Function definition

STRING(2) BOOL_TO_STR (BOOL S1);

@ Argument
Argument Name IN/OUT Description
S1 IN Data to be converted (bit data)
@ Return value
Return Value Description

STRING (2)

Conversion result (character string data)

Remarks: When the data to be converted (bit data) is 0, the return value is "0".
When the data to be converted (bit data) is 1, the return value is "1".

@ Example of use

Argument Type ST Program Conversion Result Used Instruction
BOOL s_aryl:= LD b_data1 LD, MOV, LDI
BOOL_TO_STR(b_data1); MOV K49 s_ary1
LDI b_data1
MOV K48 s _aryl

BOOL BOOL_TO_STR_E(BOOL EN, BOOL S1, STRING(2) D1);

@ Argument
Argument Name IN/OUT Description
EN IN Execution condition (Function is executed only when the result is TRUE)
S1 IN Data to be converted (bit data)
D1 OouT Conversion result (character string data)

@ Return value

Return Value

Description

BOOL

Execution condition

@ Example of use
(* When execution condition X0 turns ON, the Boolean type (BOOL) data in
(* bData is converted into the character string type, and the result is stored into *)

(* Result.

MO := BOOL_TO _STR _E (X0, bData, Result) ;

%)

“)

6 |EC FUNCTIONS

6.1.4 Double precision integer type (DINT)—Boolean type (BOOL) conversion DINT_TO_BOOL
DINT_TO_BOOL_E

TN

Double precision integer type (DINT) data is converted into Boolean type (BOOL) data.

W Function definition

W Function definition

BOOL DINT_TO_BOOL (DINT S1);

@ Argument
Argument Name IN/OUT Description
S1 IN Data to be converted (BIN 32-bit data)
@ Return value
Return Value Description

BOOL

Conversion result (bit data)

Remarks: When the data to be converted (BIN 32-bit data) is 0, the return value is "0".

When the data to be converted (BIN 32-bit data) is other than 0, the return

value is "1".

@ Example of use

Argument Type ST Program Conversion Result Used Instruction
DINT M100 := LDD<> di_data1 KO LDD<>, OUT
DINT TO BOOL(di_data1); |OUT M100
BOOL DINT_TO_BOOL _E(BOOL EN, DINT S1, BOOL D1);
@ Argument
Argument Name IN/OUT Description
EN IN Execution condition (Function is executed only when the result is TRUE)
S1 IN Data to be converted (BIN 32-bit data)
D1 OouUT Conversion result (bit data)
@ Return value
Return Value Description
BOOL Execution condition

@ Example of use

(* When execution condition X0 turns ON, the double precision integer type
(* (DINT) data in dData is converted into the Boolean type (BOOL), and the

(* result is stored into Result.

MO := DINT_TO _BOOL_E (X0, dData, Result) ;

%)
“)
“)

6 |EC FUNCTIONS

6.1.5 Double precision integer type (DINT)—integer type (INT) conversion

TN

DINT_TO_INT
DINT_TO_INT_E

Double precision integer type (DINT) data is converted into integer type (INT) data.

W Function definition

W Function definition

INT DINT_TO_INT (DINT S1);

@ Argument
Argument Name IN/OUT Description
S1 IN Data to be converted (BIN 32-bit data)
@ Return value
Return Value Description
INT Conversion result (BIN 16-bit data)

Remarks: The lower 16 bits of the data to be converted (BIN 32-bit data) is stored in

the return value.

The upper 16 bits are discarded.

@ Example of u

se

Argument Type

ST Program Conversion Result

Used Instruction

DINT i datal:=
DINT_TO_INT(di_data1); MOV di_dataf

LD SM400

i data1

LD,MOV

BOOL DINT_TO_INT_E(BOOL EN, DINT S1, INT D1);

@ Argument
Argument Name IN/OUT Description
EN IN Execution condition (Function is executed only when the result is TRUE)
S1 IN Data to be converted (BIN 32-bit data)
D1 OouUT Conversion result (BIN 16-bit data)

@ Return value

Return Value

Description

BOOL

Execution condition

@ Example of use
(* When execution condition X0 turns ON, the double precision integer type *)
(* (DINT) data in dData is converted into integer type (INT) data, and the result *)

(* is stored into Result.

MO := DINT_TO _INT_E (X0, dData, Result) ;

“)

6 |EC FUNCTIONS

6.1.6 Double precision integer type (DINT)—real number type (REAL) conversion DINT_TO_REAL

TN

DINT TO REAL E

Double precision integer type (DINT) data is converted into real number type (REAL) data.

W Function definition

W Function definition

REAL DINT_TO_REAL (DINT S1);

@ Argument
Argument Name IN/OUT Description
S1 IN Data to be converted (BIN 32-bit data)
@ Return value
Return Value Description

REAL

Conversion result (real number data)

@ Example of use

Argument Type ST Program Conversion Result Used Instruction
DINT r_datat := LD SM400 LD,DFLT
DINT_TO_REAL(di_data1); |DFLT di_data1
r data1l
BOOL DINT_TO_REAL_E(BOOL EN, DINT S1, REAL D1);
@ Argument
Argument Name IN/OUT Description
EN IN Execution condition (Function is executed only when the result is TRUE)
S1 IN Data to be converted (BIN 32-bit data)
D1 OouUT Conversion result (real number data)
@ Return value
Return Value Description
BOOL Execution condition
@ Example of use
(* When execution condition X0 turns ON, the double precision integer type *)

(* (DINT) data in dData is converted into real number type (REAL) data, and the *)

(* result is stored into Result.
MO := DINT_TO _REAL_E (X0, dData, Result) ;

%)

6 |EC FUNCTIONS

6.1.7 Double precision integer type (DINT)— character string type (STRING) conversion DINT_TO_STR

DINT TO_STR E

TN

Double precision integer type (DINT) data is converted into character string type (STRING) data.

W Function definition

W Function definition

STRING(12) DINT_TO_STR (DINT S1));

@ Argument
Argument Name IN/OUT Description
S1 IN Data to be converted (BIN 32-bit data)
@ Return value
Return Value Description
STRING (12) |Conversion result (character string data)

Remarks: This function cannot be used with the Basic model QCPU.

@ Example of use
Argument Type ST Program Conversion Result Used Instruction
DINT s_aryl:= LD SM400 LD,DBINDA

DINT_TO_STR(K65535); DBINDA K65535
s ary1

BOOL DINT_TO_STR _E(BOOL EN, DINT S1, STRING(12) D1);

@ Argument
Argument Name IN/OUT Description

EN IN Execution condition (Function is executed only when the result is TRUE)
S1 IN Data to be converted (BIN 32-bit data)
D1 OouUT Conversion result (character string data)

@ Return value

Return Value Description
BOOL Execution condition

@ Example of use

(* When execution condition X0 turns ON, the double precision integer type *)
(* (DINT) data in dData is converted into character string type data, and the)
(* result is stored into Result. *)

MO := DINT_TO_STR_E(X0, dData, Result) ;

6 |EC FUNCTIONS

6.1.8 Integer type (INT)—Boolean type (BOOL) conversion INT_TO_BOOL
INT_TO_BOOL_E

\

Integer type (INT) data is converted into Boolean type (BOOL) data.
B Function definition BOOL INT_TO_BOOL (INT S1);

@ Argument

Argument Name IN/OUT Description
S1 IN Data to be converted (BIN 16-bit data)
@ Return value
Return Value Description
BOOL Conversion result (bit data)

Remarks: When the data to be converted (BIN 16-bit data) is 0, the return value is "0".
When the data to be converted (BIN 16-bit data) is other than 0, the return
value is "1".

@ Example of use

Argument Type ST Program Conversion Result Used Instruction

INT b_data1 := INT_TO_BOOL(i_data1); [LD<> i_data KO LD<>, OUT
ouT b_data1

® Function definiton ~ BOOL INT_TO_BOOL _E(BOOL EN, INT S1, BOOL D1);

@ Argument
Argument Name IN/OUT Description
EN IN Execution condition (Function is executed only when the result is TRUE)
S1 IN Data to be converted (BIN 16-bit data)
D1 OouUT Conversion result (bit data)

@ Return value

Return Value Description

BOOL Execution condition

@ Example of use
(* When execution condition X0 turns ON, the integer type (INT) data in iData is *)
(* converted into Boolean type (BOOL) data, and the result is stored into Result. *)
MO :=INT_TO_BOOL_E(X0, iData, Result) ;

6 |EC FUNCTIONS

6.1.9 Integer type (INT)—double precision integer type (DINT) conversion

TN

INT_TO_DINT
INT_TO DINT E

Integer type (INT) data is converted into double precision integer type (DINT) data.

W Function definition

W Function definition

DINT INT_TO_DINT (INT S1);

@ Argument
Argument Name IN/OUT Description
S1 IN Data to be converted (BIN 16-bit data)
@ Return value
Return Value Description

DINT

Conversion result (BIN 32-bit data)

@ Example of use

Argument Type ST Program Conversion Result Used Instruction
INT di_data1:= INT_TO_DINT((LD SM400 LD,DBL
D500); DBL D500
di_data1
BOOL INT_TO_DINT _E(BOOL EN, INT S1, DINT D1);
@ Argument
Argument Name IN/OUT Description
EN IN Execution condition (Function is executed only when the result is TRUE)
S1 IN Data to be converted (BIN 16-bit data)
D1 OouUT Conversion result (BIN 32-bit data)

@ Return value

Return Value

Description

BOOL

Execution condition

@ Example of use

(* When execution condition X0 turns ON, the integer type (INT) data in iData is *)
(* converted into double precision integer type (DINT) data, and the result is *)
(* stored into Result.

MO := INT_TO_DINT_E(X0, iData, Result) ;

“)

6 |EC FUNCTIONS

6.1.10 Integer type (INT)—real number type (REAL) conversion

INT_TO_REAL

INT_TO_REAL_E

TN

Integer type (INT) data is converted into real number type (REAL) data.

W Function definition

W Function definition

REAL INT_TO_REAL (INT S1);

@ Argument
Argument Name IN/OUT Description
S1 IN Data to be converted (BIN 16-bit data)
@ Return value
Return Value Description

REAL

Conversion result (real number data)

@ Example of use

Argument Type ST Program Conversion Result Used Instruction
INT w_Real1:= LD SM400 LD,FLT
INT_ TO REAL(DO); FLT DO w_Real1

BOOL INT_TO_REAL_E(BOOL EN, INT S1, REAL D1);

@ Argument
Argument Name IN/OUT Description
EN IN Execution condition (Function is executed only when the result is TRUE)
S1 IN Data to be converted (BIN 16-bit data)
D1 OouUT Conversion result (real number data)

@ Return value

Return Value

Description

BOOL

Execution condition

@ Example of use

(* When execution condition X0 turns ON, the integer type (INT) data in iData is *)

(* converted into real number type (REAL) data, and the result is stored into

(* Result.

MO := INT_TO_REAL_E(X0, iData, Result) ;

6 |EC FUNCTIONS

6.1.11 Integer type (INT)—character string type (STRING) conversion

TN

INT_TO_STR
INT_TO STR E

Integer type (INT) data is converted into character string type (STRING) data.

W Function definition

W Function definition

STRING(8) INT_TO_STR (INT S1);

@ Argument
Argument Name IN/OUT Description
S1 IN Data to be converted (BIN 16-bit data)

@ Return value

Return Value

Description

STRING (8) |Conversion result (character string data)

Remarks: This function cannot be used with the Basic model QCPU.

@ Example of use
Argument Type ST Program Conversion Result Used Instruction
INT w_Str1 := INT_TO_STR(DO); |LD SM400 LD,BINDA
BINDA DO w_Str1

BOOL INT_TO_STR _E(BOOL EN, INT S1, STRING(8) D1);

@ Argument
Argument Name IN/OUT Description
EN IN Execution condition (Function is executed only when the result is TRUE)
S1 IN Data to be converted (BIN 16-bit data)
D1 OouT Conversion result (character string data)

@ Return value

Return Value

Description

BOOL

Execution condition

@ Example of use
(* When execution condition X0 turns ON, the integer type (INT) data in iData is *)

(* converted into character string type data, and the result is stored into Result. *)

MO :=INT_TO_STR_E(X0, iData, Result) ;

6 |EC FUNCTIONS

6.1.12 Real number type (REAL)—double precision integer type (DINT) conversion REAL TO_DINT

TN

REAL TO DINT E

The specified real number type (REAL) data is converted into double precision integer type (DINT) data.

W Function definition

W Function definition

DINT REAL_TO_DINT(REAL S1);

@ Argument
Argument Name IN/OUT Description
S1 IN Data to be converted (real number data)
@ Return value
Return Value Description

DINT

Conversion result (BIN 32-bit data)

@ Example of use

Argument Type ST Program Conversion Result Used Instruction
REAL w_DWord1:= LD SM400 LD,DINT
REAL_TO_DINT(w_Real1); |DINT w_Real1
w_DWord1
BOOL REAL_TO_DINT_E(BOOL EN, REAL S1, DINT D1);
@ Argument
Argument Name IN/OUT Description
EN IN Execution condition (Function is executed only when the result is TRUE)
S1 IN Data to be converted (real number data)
D1 OouUT Conversion result (BIN 32-bit data)

@ Return value

Return Value

Description

BOOL

Execution condition

@ Example of use

(* When execution condition X0 turns ON, the real number type (REAL) data in *)
(* rData is converted into double precision integer type (DINT) data, and the *)

(* result is stored into Result.

MO := REAL_TO_DINT_E(X0, rData, Result) ;

“)

6 |EC FUNCTIONS

6.1.13 Real number type (REAL)—integer type (INT) conversion

REAL_TO_INT

REAL TO_INT_E

TN

Real number type (REAL) data is converted into integer type (INT) data.

W Function definition

W Function definition

INT REAL_TO_INT (REAL S1);

@ Argument
Argument Name IN/OUT Description
S1 IN Data to be converted (real number data)
@ Return value
Return Value Description

INT

Conversion result (BIN 16-bit data)

@ Example of use

Argument Type ST Program Conversion Result Used Instruction
REAL w_Word1:= LD SM400 LD,INT
REAL_TO_INT(w_Real1); INT w_Real1
w_Word1
BOOL REAL_TO_INT_E(BOOL EN, REAL S1, INT D1);
@ Argument
Argument Name IN/OUT Description
EN IN Execution condition (Function is executed only when the result is TRUE)
S1 IN Data to be converted (real number data)
D1 OouUT Conversion result (BIN 16-bit data)

@ Return value

Return Value

Description

BOOL

Execution condition

@ Example of use
(* When execution condition X0 turns ON, the real number type (REAL) data in *)
(* rData is converted into integer type (INT) data, and the result is stored into ~ *)

(* Result.

MO := REAL_TO_INT_E(X0, rData, Resullt) ;

“)

6 |EC FUNCTIONS

6.1.14 Real number type (REAL)— character string type (STRING) conversion

TN

REAL_TO STR

REAL TO STR E

Real number type (REAL) data is converted into character string type data.

W Function definition

W Function definition

STRING(14) REAL_TO_STR (REAL S1);

@ Argument
Argument Name IN/OUT Description
S1 IN Data to be converted (real number data)

@ Return value

Return Value

Description

STRING (14)

Conversion result (character string data)

Note: The display format of the ESTR instruction is the Exponent format, the total

number of digits is 13, and the number of fraction part digits is 5.

@ Example of use

Argument Type ST Program Conversion Result Used Instruction
REAL w_Str1:= REAL_TO_STR(w_Real1); |LD SM400 LD,MOV,ESTR
MOV K1 D10237
MOV K13 D10238
MOV K5 D10239
ESTR w_Real1 D10237

w_Str1

BOOL REAL_TO_STR _E(BOOL EN, REAL S1, STRING(14) D1);

@ Argument
Argument Name IN/OUT Description
EN IN Execution condition (Function is executed only when the result is TRUE)
S1 IN Data to be converted (real number data)
D1 OouT Conversion result (character string data)

@ Return value

Return Value

Description

BOOL

Execution condition

@ Example of use
(* When execution condition X0 turns ON, the real number type (REAL) datain *)
(* rData is converted into character string type data, and the result is stored into *)

(* Result.

MO := REAL_TO_STR_E(X0, rData, Result) ;

“)

6 |EC FUNCTIONS

6.1.15 Character string type (STRING)—Boolean type (BOOL) conversion STR_TO BOOL

STR_TO BOOL_E

TN

Character string type (STRING) data is converted into Boolean type (BOOL) data.

W Function definition

W Function definition

BOOL STR_TO_BOOL (STRING(2) S1));

@ Argument
Argument Name IN/OUT Description
S1 IN Data to be converted (character string data)

@ Return value

Return Value

Description

BOOL Conversion result (bit data)

Remarks: When the data to be converted (character string data) is 0, the return value
is "0". When the data to be converted (character string data) is other than O,
the return value is "1".

@ Example of use
Argument Type ST Program Conversion Result Used Instruction
STRING w_Bit1:= LD<> w_Str1 K48 LD<>,0UT
STR _TO BOOL(w_Str1); ouT w_Bit1

BOOL STR_TO_BOOL_E(BOOL EN, STRING(2) S1, BOOL D1);

@ Argument
Argument Name IN/OUT Description
EN IN Execution condition (Function is executed only when the result is TRUE)
S1 IN Data to be converted (character string data)
D1 OouUT Conversion result (bit data)

@ Return value

Return Value

Description

BOOL

Execution condition

@ Example of use
(* When execution condition X0 turns ON, the character string type data in *)
(* sData is converted into Boolean type data, and the result is stored into Result. *)

MO := STR_TO_BOOL _E(X0, sData, Result) ;

6 |EC FUNCTIONS

6.1.16 Character string type (STRING)—double precision integer type (DINT) conversion STR _TO_DINT

STR TO DINT E

TN

Character string type (STRING) data is converted into double precision integer type (DINT) data.

W Function definition

W Function definition

DINT STR_TO_DINT (STRING(12) S1);

@ Argument
Argument Name IN/OUT Description
S1 IN Data to be converted (character string data)
@ Return value
Return Value Description
DINT Conversion result (BIN 32-bit data)

Remarks: This function cannot be used with the Basic model QCPU.

@ Example of use

Argument Type ST Program Conversion Result Used Instruction
STRING w_DWord1:= LD SM400 LD,DDABIN
STR_TO_DINT("123"); DDABIN "123"
w_DWord1

BOOL STR_TO_DINT _E(BOOL EN, STRING(12) S1, DINT D1);

@ Argument
Argument Name IN/OUT Description
EN IN Execution condition (Function is executed only when the result is TRUE)
S1 IN Data to be converted (character string data)
D1 OouUT Conversion result (BIN 32-bit data)

@ Return value

Return Value Description
BOOL Execution condition
@ Example of use
(* When execution condition X0 turns ON, the character string type data in *)
(* sData is converted into double precision integer type (DINT) data, and the *)
(* result is stored into Result.)

MO := STR_TO_DINT_E(X0, sData, Result) ;

6 |EC FUNCTIONS

6.1.17 Character string type (STRING)—integer type (INT) conversion

TN

STR_TO_INT
STR TO_INT E

Character string type (STRING) data is converted into integer type (INT) data.

W Function definition

W Function definition

INT STR_TO_INT (STRING(6) S1);

@ Argument
Argument Name IN/OUT Description
S1 IN Data to be converted (character string data)
@ Return value
Return Value Description
INT Conversion result (BIN 16-bit data)

Remarks: This function cannot be used with the Basic model QCPU.

@ Example of u

se

Argument Type ST Program Conversion Result Used Instruction
STRING w_Word1:= LD SM400 LD,DABIN
STR _TO INT(w_Str1); DABIN ~ w Str1 w Word1

BOOL STR_TO_INT _E(BOOL EN, STRING(6) S1, INT D1);

@ Argument
Argument Name IN/OUT Description
EN IN Execution condition (Function is executed only when the result is TRUE)
S1 IN Data to be converted (character string data)
D1 OouUT Conversion result (BIN 16-bit data)

@ Return value

Return Value Description
BOOL Execution condition
@ Example of use
(* When execution condition X0 turns ON, the character string type data in *)

(* sData is converted into integer type (INT) data, and the result is stored into ~ *)

(* Result.

MO := STR_TO_INT_E(X0, sData, Result) ;

“)

6 |EC FUNCTIONS

6.1.18 Character string type (STRING)— real number type (REAL) conversion STR _TO REAL
STR TO _REAL E

\
Character string type (STRING) data is converted into real number type (REAL) data.

® Function definiton ~ REAL STR_TO_REAL (STRING(24) S1);

@ Argument
Argument Name IN/OUT Description

S1 IN Data to be converted (character string data)
@ Return value

Return Value Description
REAL Conversion result (real number data)
Remarks:
@ Example of use
Argument Type ST Program Conversion Result Used Instruction
STRING w_Real1:= LD SM400 LD,EVAL
STR _TO REAL(w_Str1); EVAL w_Str1 w_Real1

W Function definiton ~ BOOL STR_TO_REAL _E(BOOL EN, STRING(24) S1, REAL D1);

@ Argument

Argument Name IN/OUT Description
EN IN Execution condition (Function is executed only when the result is TRUE)
S1 IN Data to be converted (character string data)
D1 OouT Conversion result (real number data)

@ Return valu

]

Return Value Description

BOOL Execution condition

@ Example of use

(* When execution condition X0 turns ON, the character string type data in *)
(* sData is converted into real number type (REAL) data, and the result is stored *)
(* into Resullt. *)

MO := STR_TO_REAL_E(X0, sData, Result) ;

6 |EC FUNCTIONS

6.2 Numerical Functions (General Functions)

6.2.1 Absolute value @ ABS

The absolute value of the specified data is operated.

W Function definition

W Function definition

ABS_E
\
ANY_NUM ABS (ANY_NUM S1);
@ Argument
Argument Name IN/OUT Description
S1 IN Data whose absolute value will be found
@ Return value
Return Value Description
ANY NUM Absolute value operation result
@ Example of use
Argument Type ST Program Conversion Result Used Instruction
REAL r_data1 := ABS(r_data2); LD SM400 LD,EMOV, LDE<, E*
EMOV r_data2
r_data1l
LDE< r data2 EO
E* E-1
r_data2
r data1l
INT DO := ABS(D1); LD SM400 LD,MOV, LD<, NEG
MOV D1 DO
LD< D1 KO
NEG DO
DINT di_data1:= ABS(di_data2); |LD SM400 LD,DMOV, LDD<, DCML
DMOV di_data2 D+
di_data1
LDD< di_data2 KO
DCML di_data2
di_data1
D+ K1
di_data1
BOOL ABS_E(BOOL EN, ANY_NUM S1, ANY_NUM D1);
@ Argument
Argument Name IN/OUT Description
EN IN Execution condition (Function is executed only when the result is TRUE)
S1 IN Data whose absolute value will be found
D1 ouT Absolute value operation result
@ Return value
Return Value Description
BOOL Execution condition

@ Example of use
(* When execution condition X0 turns ON, the absolute value of the data stored *)
(* in iData is found, and the result is stored into Result.)
MO := ABS_E(X0, iData, Result) ;

|For the usable data type, refer to "3.2.2 About ANY type". |

6-21

6 |EC FUNCTIONS

6.2.2 Square root

SQRT
SQRT E

The square root of the specified data is operated.

W Function definition

W Function definition

REAL SQRT (REAL S1);

@ Argument
Argument Name IN/OUT Description
S1 IN Data whose square root will be found
@ Return value
Return Value Description
REAL Square root operation result (real number data)
Remarks:
@ Example of use
Argument Type ST Program Conversion Result Used Instruction
REAL r_datal:= SQRT(r_data2); |LD SM400 LD,SQR

SQR r_data2
r data1

BOOL SQRT_E(BOOL EN, REAL S1, REAL D1);

@ Argument
Argument Name IN/OUT Description
EN IN Execution condition (Function is executed only when the result is TRUE)
S1 IN Data whose square root will be found (real number data)
D1 OouUT Square root operation result (real number data)

@ Return value

Return Value

Description

BOOL

Execution condition

@ Example of use
(* When execution condition X0 turns ON, the square root of the data stored in *)
(* rData is found, and the result is stored into Result.

MO := SQRT_E(X0, rData, Result) ;

“)

6 |EC FUNCTIONS

6.3 Numeric Functions (Logarithm Functions)

6.3.1 Natural logarithm LN

The natural logarithm of the specified data is operated.

W Function definition

W Function definition

LN_E
\
REAL LN(REAL S1);
@ Argument
Argument Name IN/OUT Description

S1 IN Data whose natural logarithm will be found (real number data)

@ Return value
Return Value Description

REAL Natural logarithm operation result (real number data)
Remarks:
@ Example of use
Argument Type ST Program Conversion Result Used Instruction
REAL r_datat := LN(1.23456); LD SM400 LD,LOG
LOG E1.23456
r data1l
BOOL LN_E(BOOL EN, REAL S1, REAL D1));
@ Argument
Argument Name IN/OUT Description
EN IN Execution condition (Function is executed only when the result is TRUE)
S1 IN Data whose natural logarithm will be found (real number data)
D1 ouT Natural logarithm operation result (real number data)

@ Return value

Return Value

Description

BOOL

Execution condition

@ Example of use

(* When execution condition X0 turns ON, the natural logarithm of the data
(* stored in rData is found, and the result is stored into Resullt.
MO := LN_E(X0, rData, Result) ;

“)
%)

6 |EC FUNCTIONS

6.3.2 Natural exponent

EXP

EXP_E

The natural exponent of the specified data is operated.

W Function definition

W Function definition

REAL EXP(REAL S1);

@ Argument

Argument Name

IN/OUT

Description

S1

IN Data whose natural exponent will be found (real number data)

@ Return value

Return Value

Description

REAL

Natural exponent operation result (real number data)

Remarks:

@ Example of use

Argument Type ST Program Conversion Result Used Instruction
REAL r_data1 := EXP(r_data2); LD SM400 LD,EXP
EXP r_data2
r data1l
BOOL EXP_E(BOOL EN, REAL S1, REAL D1);
@ Argument
Argument Name IN/OUT Description
EN IN Execution condition (Function is executed only when the result is TRUE)
S1 IN Data whose natural exponent will be found (real number data)
D1 OouT Natural exponent operation result (real number data)
@ Return value
Return Value Description
BOOL Execution condition

@ Example of use

(* When execution condition X0 turns ON, the natural exponent of the data

(* stored in rData is found, and the result is stored into Result.

MO := EXP_E(X0, rData, Result) ;

%)
“)

6 |EC FUNCTIONS

6.4 Numerical Functions (Trigonometric Functions)

6.4.1 Floating-point SIN operation

The SIN (sine) value of the specified angle is operated.

W Function definition

W Function definition

SIN
SIN_E
\
REAL SIN(REAL S1);
@ Argument
Argument Name IN/OUT Description
S1 IN Angle data to be SIN (sine) operated (real number data)

Remarks: Set the specified angle in radian unit (angle X 7 / 180).

@ Return value

Return Value

Description

REAL

SIN operation result (real number data)

@ Example of use

Argument Type ST Program Conversion Result Used Instruction
REAL r_data1 := SIN(1.23456); LD SM400 LD,SIN
SIN E1.23456
r data1l
BOOL SIN_E(BOOL EN, REAL S1, REAL D1);
@ Argument
Argument Name IN/OUT Description
EN IN Execution condition (Function is executed only when the result is TRUE)
S1 IN Angle data to be SIN (sine) operated (real number data)
Remarks: Set the specified angle in radian (unit angle x 7 / 180).
D1 ouT SIN operation result (real number data)

@ Return value

Return Value Description
BOOL Execution condition
@ Example of use
(* When execution condition X0 turns ON, the SIN value of the angle data *)
(* stored in rData is calculated, and the result is stored into Result. *)

MO := SIN_E(X0, rData, Result) ;

6 |EC FUNCTIONS

6.4.2 Floating-point COS operation COS

The COS (cosine) value of the specified angle is operated.

W Function definition

W Function definition

COS_E
\
REAL COS(REAL S1);
@ Argument
Argument Name IN/OUT Description
S1 IN Angle data to be COS (cosine) operated (real number data)

Remarks: Set the specified angle in radian unit (angle x 7 / 180).

@ Return value

Return Value

Description

REAL COS operation result (real number data)
@ Example of use
Argument Type ST Program Conversion Result Used Instruction
REAL w_Real1 := COS(w_Real2); |LD SM400 LD,COS
COos w_Real2
w_Real1
BOOL COS_E(BOOL EN, REAL S1, REAL D1);
@ Argument
Argument Name IN/OUT Description
EN IN Execution condition (Function is executed only when the result is TRUE)
S1 IN Angle data to be COS (cosine) operated (real number data)
Remarks: Set the specified angle in radian unit (angle > 7t / 180).
D1 OouUT COS operation result (real number data)

Remarks: Set the specified angle in radian unit (angle x 7 / 180).

@ Return value

Return Value Description
BOOL Execution condition
@ Example of use
(* When execution condition X0 turns ON, the COS value of the angle data *)
(* stored in rData is calculated, and the result is stored into Result.)

MO := COS_E(X0, rData, Result) ;

6 |EC FUNCTIONS

6.4.3 Floating-point TAN operation ~ TAN

The TAN (tangent) value of the specified angle is operated.

W Function definition

W Function definition

TAN_E
\
REAL TAN(REAL S1);
@ Argument
Argument Name IN/OUT Description
S1 IN Angle data to be TAN (tangent) operated (real number data)

Remarks: Set the specified angle in radian unit (angle x 7 / 180).

@ Return value

Return Value

Description

REAL

TAN operation result (real number data)

@ Example of use

Argument Type ST Program Conversion Result Used Instruction
REAL w_Real1 := TAN(w_Real2); |LD SM400 LD,TAN
TAN w_Real2
w_Real1
BOOL TAN_E(BOOL EN, REAL S1, REAL D1);
@ Argument
Argument Name IN/OUT Description
EN IN Execution condition (Function is executed only when the result is TRUE)
S1 IN Angle data to be TAN (tangent) operated (real number data)
Remarks: Set the specified angle in radian unit (angle > 7t / 180).
D1 OouUT TAN operation result (real number data)
@ Return value
Return Value Description
BOOL Execution condition

@ Example of use
(* When execution condition X0 turns ON, the TAN value of the angle data *)
(* stored in rData is calculated, and the result is stored into Result.)
MO := TAN_E(X0, rData, Result) ;

6 |EC FUNCTIONS

6.4.4 Floating-point SIN-' operation ~ ASIN

ASIN_E
\

The SIN”’ (arcsine) of the specified SIN value is operated.
W Function definiton ~ REAL ASIN(REAL S1);

@ Argument

Argument Name IN/OUT Description
S1 IN SIN value to be SIN'1 (arcsine) operated (-1.0 to 1.0) (real number data)
@ Return value
Return Value Description
REAL SIN” operation result (real number data)

W Function definition

Remarks: This function cannot be used with the Basic model QCPU.
The operation result is the angle data in radian unit.

@ Example of use

Argument Type ST Program Conversion Result Used Instruction
REAL w_Real1 := ASIN(w_Real2); |LD SM400 LD,ASIN
ASIN w_Real2
w_Real1
BOOL ASIN_E(BOOL EN, REAL S1, REAL D1);
@ Argument
Argument Name IN/OUT Description
EN IN Execution condition (Function is executed only when the result is TRUE)
S1 IN SIN value to be SIN'1 (arcsine) operated (-1.0 to 1.0) (real number data)
D1 ouT SIN'1 operation result (real number data)

Remarks: The operation result is the angle data in radian unit.

@ Return value

Return Value

Description

BOOL

Execution condition

@ Example of use
(* When execution condition X0 turns ON, the angle is operated from the SIN ~ *)
(* value stored in rData, and the result is stored into Result.)
MO := ASIN_E(X0, rData, Result) ;

6 |EC FUNCTIONS

6.4.5 Floating-point COS-1 operation

W Function definition

ACOS
ACOS_E
\
The COS™ (arccosine) of the specified COS value is operated.
REAL ACOS(REAL S1);
@ Argument
Argument Name IN/OUT Description
S1 IN COS value to be COS'1 (arccosine) operated (-1.0 to 1.0) (real number

W Function definition

data)

@ Return value

Return Value

Description

REAL

COS_1 operation result (real number data)

Remarks: This function cannot be used with the Basic model QCPU.
The operation result is the angle data in radian unit.

@ Example of use

Argument Type ST Program Conversion Result Used Instruction
REAL w_Real1 := ACOS(w_Real2);|LD SM400 LD,ACOS
ACOS w_Real2
w_Real1

BOOL ACOS_E(BOOL EN, REAL S1, REAL D1);

@ Argument
Argument Name IN/OUT Description
EN IN Execution condition (Function is executed only when the result is TRUE)
S1 IN COS value to be COS'1 (arccosine) operated (-1.0 to 1.0) (real number
data)
D1 ouT COS'1 operation result (real number data)

Remarks: The operation result is the angle data in radian unit.

@ Return value

Return Value

Description

BOOL

Execution condition

@ Example of use

(* When execution condition X0 turns ON, the angle is operated from the COS
(* value stored in rData, and the result is stored into Result.

MO := ACOS_E(X0, rData, Result) ;

%)
“)

6 |EC FUNCTIONS

6.4.6 Floating-point TAN-! operation

W Function definition

ATAN
ATAN_E
\
The TAN™ (arctangent) of the specified TAN value is operated.
REAL ATAN(REAL S1);
@ Argument
Argument Name IN/OUT Description
S1 IN TAN value to be TAN'1 (arctangent) operated (real number data)
@ Return value
Return Value Description

W Function definition

REAL

TAN'1 operation result (real number data)

Remarks: This function cannot be used with the Basic model QCPU.
The operation result is the angle data in radian unit.

@ Example of use

Argument Type ST Program Conversion Result Used Instruction
REAL w_Real1 := ATAN(w_Real2); |LD SM400 LD,ATAN
ATAN w_Real2
w_Real1
BOOL ATAN_E(BOOL EN, REAL S1, REAL D1);
@ Argument
Argument Name IN/OUT Description
EN IN Execution condition (Function is executed only when the result is TRUE)
S1 IN TAN value to be TAN'1 (arctangent) operated (real number data)
D1 ouT TAN'1 operation result (real number data)

Remarks: The operation result is the angle data in radian unit.

@ Return value

Return Value

Description

BOOL

Execution condition

@ Example of use
(* When execution condition X0 turns ON, the angle is operated from the TAN
(* value stored in rData, and the result is stored into Result.
MO := ATAN_E(X0, rData, Result) ;

%)
“)

6 |EC FUNCTIONS

6.5 Arithmetic Operation Functions

6.5.1 Addition ~ ADD_E

TN

The specified multiple data are added.

® Function definiton ~ BOOL ADD_E(BOOL EN, ANY_NUM S1, ANY_NUM S2,....,ANY_NUM Sn,

ANY_NUM D1);
@ Argument
Argument Name IN/OUT Description
EN IN Execution condition (Function is executed only when the result is TRUE)
S1to Sn IN Data to be added
D1 ouT Addition operation result

@ Return value

Return Value Description

BOOL Execution condition (bit data)

@ Example of use

Argument Type ST Program Conversion Result Used Instruction
REAL b_result := ADD_E(b_select, |LD b_select LD, E+, OUT
r_data1, r_data2, r_data3); E+ r_data1l
r_data2
r_data3
LD b_select
ouT b_result
INT b_result := ADD_E(b_select, (LD b_select LD, +, OUT
D10, D20, D30, D40); + D10 D20
D40
+ D30 D40
LD b_select
ouT b result
DINT b_result := ADD_E(b_select, (LD b_select LD,D+,0UT
di_data1, D+ di_data1
di_data2, di_data3); di_data2
di_data3
LD b_select
ouT b result

For the usable data type, refer to "3.2.2 About ANY type".

6 |EC FUNCTIONS

6.5.2 Multiplication MUL_E

TN

The specified multiple data are multiplied.

m Function definition ~ BOOL MUL_E(BOOL EN, ANY_NUM S1, ANY_NUM S2,....,ANY_NUM Sn,

ANY_NUM D1);
@ Argument
Argument Name IN/OUT Description
EN IN Execution condition (Function is executed only when the result is TRUE)
S1to Sn IN Data to be multiplied
D1 ouT Multiplication operation result
@ Return value
Return Value Description
BOOL Execution condition (bit data)
@ Example of use
Argument Type ST Program Conversion Result Used Instruction
REAL b_result := MUL_E(b_select, |LD b_select LD, E*, OUT
r_data1, r_data2, r_data3); E* r_data1
r_data2
r_data3
LD b_select
ouT b_result
INT b_result := MUL_E(b_select, |LD b_select LD, *, MOV, OUT
D10, D20, D30, D40); * D10 D20
D10238
* D10238 D30
D10236
MOV D10236 D40
LD b_select
ouT b_result
DINT b_result := MUL_E(b_select, |LD b_select LD, D*, DMQOV,
di_data1, D* di_data1 ouT
di_data2, di_datag3); di_data2
D10236
DMOV D10236
di_data3
LD b_select
ouT b result

For the usable data type, refer to "3.2.2 About ANY type".

6 |EC FUNCTIONS

6.5.3 Subtraction SUB_E

TN

Subtraction is performed between the specified data.

® Function definiton ~ BOOL SUB_E(BOOL EN, ANY_NUM S1, ANY_NUM S2, ANY_NUM D1);

@ Argument
Argument Name IN/OUT Description
EN IN Execution condition (Function is executed only when the result is TRUE)
S1 IN Minuend data
S2 IN Subtrahend data
D1 ouT Subtraction operation result

@ Return value

Return Value Description

BOOL Execution condition (bit data)

@ Example of use

Argument Type ST Program Conversion Result Used Instruction
REAL b_result := SUB_E(b_select, |LD b_select LD, E-, OUT
r_data1, r_data2, r_data3); E- r_data1l
r_data2
r_data3
LD b_select
ouT b_result
INT b_result := SUB_E(b_select, (LD b_select LD, -, OUT
32767, D100, i_data1); - K32767 D100
i_data1
LD b_select
ouT b_result
DINT b_result ;== SUB_E(b_select, (LD b_select LD, D-, OUT
di_data1, D- di_data1
di_data2, di_data3); di_data2
di_data3
LD b_select
ouT b result

For the usable data type, refer to "3.2.2 About ANY type".

6 |EC FUNCTIONS

6.5.4 Division DIV_E

TN

Division is performed between the specified data.

B Function definiton ~ BOOL DIV_E(BOOL EN, ANY_NUM S1, ANY_NUM S2, ANY_NUM D1);

@ Argument
Argument Name IN/OUT Description
EN IN Execution condition (Function is executed only when the result is TRUE)
S1 IN Dividend data
S2 IN Divisor data
D1 ouT Division operation result

@ Return value

Return Value Description

BOOL Execution condition (bit data)

@ Example of use

Argument Type ST Program Conversion Result Used Instruction
REAL b_result := DIV_E(b_select, |LD b_select LD, E/, OUT
r_data1, r_data2, r_data3); E/ r_data1l
r_data2
r_data3
LD b_select
ouT b_result
INT b_result := DIV_E(b_select, (LD b_select LD, /, MOV, OUT
D10, D20, D30); / D10 D20
D10238
MOV D10238 D30
LD b_select
ouT b_result
DINT b_result := DIV_E(b_select, (LD b_select LD, D/, DMOV,
di_data1, D/ di_data1 ouT
di_data2, di_data3); di_data2
D10236
DMOV D10236
di_data3
LD b_select
ouT b result

For the usable data type, refer to "3.2.2 About ANY type".

6 |EC FUNCTIONS

6.5.5 Modulus operation MOD
MOD_E

TN

Division is performed between the specified data, and its remainder is operated.

® Function definiton ~ BOOL MOD_E(BOOL EN, ANY_INT S1, ANY_INT S2, ANY_INT D1);

@ Argument
Argument Name IN/OUT Description
EN IN Execution condition (Function is executed only when the result is TRUE)
S1 IN Dividend data
S2 IN Divisor data
D1 OouUT Modulus operation result

@ Return value

Return Value Description
BOOL Execution condition (bit data)

@ Example of use

Argument Type ST Program Conversion Result Used Instruction
INT B100 := LD M1 LD, /, MOV, OUT
MOD_E(M1, D10, D20, D30 |/ D10 D20
); D10238
MOV D10239 D30
LD M1
ouT B100
DINT b_result := MOD_E(b_select, |LD b_select LD, D/, DMOV,
di_data1, di_data2, di_data3);|D/ di_data1 ouT
di_data2
D10236
DMOV D10238
di_data3
LD b_select
ouT b result

* MOD can be used as an operator only.

For the usable data type, refer to "3.2.2 About ANY type".

6 |EC FUNCTIONS

6.5.6 Natural exponential

EXPT

EXPT E

TN

Natural exponential is operated from the specified data used as a base and data used as an exponent.

W Function definition

REAL EXPT (REAL S1, ANY_NUM S2);

@ Argument
Argument Name IN/OUT Description
S1 IN Data used as base
S2 IN Data used as exponent
@ Return value
Return Value Description

REAL

Operation result (real number data)

@ Example of use

Argument Type ST Program Conversion Result Used Instruction
REAL r_data1 := EXPT(r_data2, LD SM400 LD, LOG, E*, EXP
r_data3); LOG r_data2
r_data1l
E* r_data1l
r_data3
r_data1l
EXP r_data1
r_data1l
INT r_datat := EXPT(1.123, LD SM400 LD, LOG, FLT, E*,

k32767); LOG E1.123 EXP
r_data1l
FLT K32767
D10238
E* r_data1l
D10238
r_data1l
EXP r_data1l
r_data1l

DINT r_data1 := EXPT(r_data2, LD SM400 LD,LOG, DFLT, E*,

di_data1); LOG r_data2 EXP
r_data1l
DFLT di_data1
D10238
E* r_data1l
D10238
r_data1l
EXP r_data1l
r datal

6 |EC FUNCTIONS

® Function definiton ~ BOOL EXPT_E(BOOL EN, REAL S1, ANY_NUM S2, REAL D1);

@ Argument
Argument Name IN/OUT Description
EN IN Execution condition (Function is executed only when the result is TRUE)
S1 IN Data used as base
S2 IN Data used as exponent
D1 ouT Operation result

Remarks: The operation result is the angle data in radian unit.

@ Return value

Return Value Description
BOOL Execution condition

@ Example of use
(* When execution condition X0 turns ON, the data stored in rData is natural)
(* exponential-operated with the data stored in iData, and the result is stored *)
(* into Result. *)
MO := EXPT_E(X0, rData, iData, Result) ;

For the usable data type, refer to "3.2.2 About ANY type". |

6 |EC FUNCTIONS

6.5.7 Assignment MOVE
MOVE_E
\
The specified data is assigned to the specified storage destination.
B Function definiton ~ ANY MOVE (ANY S1);
@ Argument
Argument Name IN/OUT Description
S1 IN Data to be assigned
@ Return value
Return Value Description
ANY Assignment result data
@ Example of use
Argument Type ST Program Conversion Result Used Instruction
REAL W_Real1:= LD SM400 LD,EMOV
MOVE(W_Real2); EMOV w_Real2
w_Real1
INT D1 :=MOVE(DO); LD SM400 LD,MOV
MoV DO D1
DINT w_DWord1:= LD SM400 LD,DMOV
MOVE(2147483647); DMOV K2147483647
w_DWord1
BOOL w_Bit1:= MOVE(w_Bit2); LD SM400 LD,MPS,AND,SET,MRD,
MPS ANLRST,MPP,OUT
AND w_Bit2
SET w_Bit1
MRD
ANI w_Bit2
RST w_Bit1
MPP
out M8191
STRING w_Str1 LD SM400 LD,$MOV
:= MOVE("ABCDEFG"); $MOV "ABCDEFG"
w_Str1
m Function definiton ~ BOOL MOVE_E(BOOL EN, ANY S1, ANY D1);
@ Argument
Argument Name IN/OUT Description
EN IN Execution condition (Function is executed only when the result is TRUE)
S1 IN Data to be assigned
D1 ouT Assignment result data
@ Return value
Return Value Description
BOOL Execution condition

@ Example of use
(* When execution condition X0 turns ON, the data stored in iData is stored into *)

(* Result.

MO := MOVE_E(X0, iData, Result) ;

“)

|For the usable data type, refer to "3.2.2 About ANY type". |

6-38

6 |EC FUNCTIONS

6.6 Bit Shift Functions

6.6.1 Bit left shift

The specified data is shifted n bits to the left.

W Function definition

W Function definition

SHL
SHL_E
\
ANY_BIT SHL (ANY_BIT S1, ANY_BIT n);
@ Argument
Argument Name IN/OUT Description
S1 IN Data to be shifted
n IN Number of bits to be shifted
Remarks: Only a constant can be specified as the number of bits to be
shifted.
@ Return value
Return Value Description
ANY_BIT Shifted data
Remarks: n bits of data from the least significant bit are 0.
Remarks:

@ Example of use

Argument Type ST Program Conversion Result Used Instruction
INT DO := SHL(D1,1); LD SM400 LD,MOV,SFL
MOV D1 DO
SFL DO K1
BOOL SHL_E(BOOL EN, ANY_BIT S1, ANY_BIT n, ANY_BIT D1);
@ Argument
Argument Name IN/OUT Description
EN IN Execution condition (Function is executed only when the result is TRUE)
S1 IN Data to be shifted
n IN Number of bits to be shifted
Remarks: Only a constant can be specified as the number of bits to be
shifted.
D1 ouT Shifted data
Remarks: n bits of data from the least significant bit are O.

@ Return value

Return Value

Description

BOOL

Execution condition

@ Example of use
(* When execution condition X0 turns ON, the data stored in DO is shifted 2 bits *)
(* to the left, and the result is stored into Result.)
MO0:=SHL_E(X0, DO, 2, D100);

|For the usable data type, refer to "3.2.2 About ANY type". |

6 |EC FUNCTIONS

6.6.2 Bit right shift

SHR
SHR E

TN

The specified data is shifted n bits to the right.

W Function definition

W Function definition

ANY_BIT SHR (ANY_BIT S1, ANY_BIT n);
@ Argument
Argument Name IN/OUT Description
S1 IN Data to be shifted
n Number of bits to be shifted
IN Remarks: Only a constant can be specified as the number of bits to be
shifted.
@ Return value
Return Value Description
ANY_BIT Shifted data
Remarks: n bits of data from the most significant bit are 0.
Remarks:

@ Example of use

Argument Type ST Program Conversion Result Used Instruction
INT DO := SHR(D1,1); LD SM400 LD,MOV,SFR
MOV D1 DO
SFR DO K1
BOOL SHR_E(BOOL EN, ANY_BIT S1, ANY_BIT n, ANY_BIT D1);
@ Argument
Argument Name IN/OUT Description
EN IN Execution condition (Function is executed only when the result is TRUE)
S1 IN Data to be shifted
n IN Number of bits to be shifted
Remarks: Only a constant can be specified as the number of bits to be
shifted.
D1 ouT Shifted data
Remarks: n bits of data from the most significant bit are 0.

@ Return value

Return Value

Description

BOOL

Execution condition

@ Example of use
(* When execution condition X0 turns ON, the data stored in DO is shifted 2 bits *)
(* to the right, and the result is stored into Result.)
MO0:=SHR_E(XO0, DO, 2, D100);

|For the usable data type, refer to "3.2.2 About ANY type". |

6 |EC FUNCTIONS

6.6.3 Right rotation

ROR
ROR _E

Data is rotated n bits to the right in a circle.

W Function definition

W Function definition

TN

ANY_BIT ROR (ANY_BIT S1, ANY_BIT n);

@ Argument
Argument Name IN/OUT Description
S1 IN Data to be rotated
n IN Number of bits to be rotated

Remarks: Only a constant can be specified as the number of bits to be
rotated.

@ Return value

Return Value

Description

ANY _BIT

Rotation result data

Remarks:

@ Example of use

Argument Type ST Program Conversion Result Used Instruction
INT DO := ROR(D1,1); LD SM400 LD,MOV,ROR
MOV D1 DO
ROR DO K1

BOOL ROR_E(BOOL EN, ANY_BIT S1, ANY_BIT n, ANY_BIT D1);

@ Argument
Argument Name IN/OUT Description

EN IN Execution condition (Function is executed only when the result is TRUE)

S1 IN Data to be rotated

n IN Number of bits to be rotated

Remarks: Only a constant can be specified as the number of bits to be

rotated.

D1 OouT Rotation result data

@ Return value

Return Value

Description

BOOL

Execution condition

@ Example of use

(* When execution condition X0 turns ON, the data stored in DO is rotated 1 bit *)

(* to the right, and the result is stored into D100.)
MO0:=ROR_E(X0, DO, 1, D100);

|For the usable data type, refer to "3.2.2 About ANY type". |

6 |EC FUNCTIONS

6.6.4 Left rotation

ROL
ROL_E

TN

Data is rotated n bits to the left in a circle.

W Function definition

W Function definition

ANY_BIT ROL (ANY_BIT S1, ANY_BIT n);

@ Argument
Argument Name IN/OUT Description
S1 IN Data to be rotated
n IN Number of bits to be rotated
Remarks: Only a constant can be specified as the number of bits to be
rotated.
@ Return value
Return Value Description
ANY BIT Rotation result data

Remarks:

@ Example of use

Argument Type ST Program Conversion Result Used Instruction
INT DO :=ROL(D1,1); LD SM400 LD,MOV,ROL
MOV D1 DO
ROL DO K1
BOOL ROL_E(BOOL EN, ANY_BIT S1, ANY_BIT n, ANY_BIT D1);
@ Argument
Argument Name IN/OUT Description
EN IN Execution condition (Function is executed only when the result is TRUE)
S1 IN Data to be rotated
n IN Number of bits to be rotated
Remarks: Only a constant can be specified as the number of bits to be
rotated.
D1 OouT Rotation result data

@ Return value

Return Value

Description

BOOL

Execution condition

@ Example of use
(* When execution condition X0 turns ON, the data stored in DO is rotated 1 bit *)
(* to the left, and the result is stored into D100.)
MO0:=ROL_E(X0, DO, 1, D100);

|For the usable data type, refer to "3.2.2 About ANY type". |

6 |EC FUNCTIONS

6.7 Bit Type Boolean Functions

6.7.1 Logical product AND_E

TN

The logical product of the specified multiple data is operated.

® Function definiton ~ BOOL AND_E(BOOL EN, ANY_BIT S1, ANY_BIT S2,...., ANY_BIT Sn, ANY_BIT

D1);
@ Argument
Argument Name IN/OUT Description
EN IN Execution condition (Function is executed only when the result is TRUE)
S1to Sn IN Data to be ANDed
D1 ouT AND operation result

@ Return value

Return Value Description

BOOL Execution condition

@ Example of use

Argument Type ST Program Conversion Result Used Instruction
BOOL b_result := AND_E(b_select, (LD b_data1 LD,AND,OUT,SET,
b_data1, b_data2, b_data3, AND b_data2 ANI,RST
b_datad); AND b data3
ouT M8191
LD b_select
AND M8191
SET b_data4
LD b_select
ANI M8191
RST b_data4
LD b_select
ouT b_result
Word device |b_result := AND_E(b_select, [LD b_select LD, WAND, OUT
do, d1, d2, d3); WAND DO D1
D10239
WAND D10239 D2
D3
LD b_select
OouT b result

For the usable data type, refer to "3.2.2 About ANY type".

6 |EC FUNCTIONS

6.7.2 Logicalsum OR_E

TN

The logical sum of the specified multiple data is operated.

® Function definiton ~ BOOL OR_E(BOOL EN, ANY_BIT S1, ANY_BIT S2,...., ANY_BIT Sn, ANY_BIT D1);

@ Argument
Argument Name IN/OUT Description
EN IN Execution condition (Function is executed only when the result is TRUE)
S1to Sn IN Data to be ORed
D1 ouT OR operation result

@ Return value

Return Value Description
BOOL Execution condition
Remarks:

@ Example of use

Argument Type ST Program Conversion Result Used Instruction
BOOL b_result := OR_E(TRUE, LD b_data1 LD,OR,0OUT,AND,SET,
b_data1, b_data2, b_data3); OR b data2 ANI,RST
ouT M8191
LD SM400
AND M8191
SET b_data3
LD SM400
ANI M8191
RST b_data3
LD SM400
ouT b_result
Word device |B1:= LD SM400 LD, WOR, OUT
OR_E(TRUE, DO, D1,D2); [WOR D0 D1 D2
LD SM400
ouT B1

For the usable data type, refer to "3.2.2 About ANY type".

6 |EC FUNCTIONS

6.7.3 Exclusive logical sum XOR_E

TN

The exclusive logical sum of the specified multiple data is operated.

® Function definiton ~ BOOL XOR_E(BOOL EN, ANY_BIT S1, ANY_BIT S2,...., ANY_BIT Sn, ANY_BIT D1);

@ Argument
Argument Name IN/OUT Description
EN IN Execution condition (Function is executed only when the result is TRUE)
S1to Sn IN Data to be EXCLUSIVE ORed
D1 ouT EXCLUSIVE OR operation result

@ Return value

Return Value Description
BOOL Execution condition
Remarks:

@ Example of use

Argument Type ST Program Conversion Result Used Instruction
BOOL b_result := XOR_E(b_select, (LD b_data1 LD,ANI,LDI,AND,ORB,
b_data1, b_data2, b_data3); ANI b_data2 OUT,SET,RST

LDI b_data1

AND b_data2

ORB

ouT M8191

LD b_select

AND M8191

SET b_data3

LD b_select

ANI M8191

RST b_data3

LD b_select

ouT b_result

Word device |b_result := XOR_E(TRUE, LD SM400 LD,WXOR, OUT
d0z2, d1z3, d2z4); WXOR D0Z2 D1Z3
D2z4
LD SM400
OouT b result

For the usable data type, refer to "3.2.2 About ANY type".

6 |EC FUNCTIONS

6.7.4 Logical NOT

The logical NOT of the specified data is operated.

W Function definition

W Function definition

NOT
NOT_E
ANY_BIT NOT(ANY_BIT S1);
@ Argument
Argument Name IN/OUT Description
S1 IN Data to be logical NOT operated
@ Return value
Return Value Description
ANY BIT Logical NOT operation result
Remarks:
@ Example of use
Argument Type ST Program Conversion Result Used Instruction
BOOL b_result := NOT(b_data1); [LDI b_data1 LDI, OUT
OouUT b result
Word device |d0z2 := NOT(d1z3); LD SM400 LD, CML
CML D123 D0Z2
BOOL NOT_E(BOOL EN, ANY_BIT S1, ANY_BIT D1);
@ Argument
Argument Name IN/OUT Description
EN IN Execution condition (Function is executed only when the result is TRUE)
S1 IN Data to be logical NOT operated
D1 ouT Logical NOT operation result

@ Return value

Return Value

Description

BOOL

Execution condition

@ Example of use
(* When execution condition X0 turns ON, the logical NOT of the data stored in *)
(* DO is found, and the result is stored into D100. *)
MO0:=NOT_E(X0, DO, D100);

|For the usable data type, refer to "3.2.2 About ANY type". |

6 |EC FUNCTIONS

6.8 Selection Functions

6.8.1 Binary selection

SEL
SEL_E

TN

One data is selected from among the specified two data according to the selection condition.

W Function definition

ANY SEL(BOOL S1, ANY S2, ANY S3);

@ Argument
Argument Name IN/OUT Description
S1 IN Selection condition
S2 IN Data to be selected when S1 is FALSE
S3 IN Data to be selected when S1 is TRUE
@ Return value
Return Value Description

ANY

Selection result
When S1is FALSE
When S1is TRUE

Return value = S2
Return value = S3

@ Example of use

Argument Type ST Program Conversion Result Used Instruction
REAL r_data1 := SEL(b_select, LDI b_select LDI, EMOV, LD,
r_data2, r_data3); EMOV r_data2
r_data1l
LD b_select
EMOV r_data3
r_data1l
INT D1:= LDI X1 LDI, MOV, LD
SEL(X1, D2, D3); MOV D2 D1
LD X1
MOV D3 D1
DINT K8X100 := LDI X1 LDI, DMOV, LD
SEL(X1, K8X10, DMOV K8X10 K8X100
K2147483647); LD X1
DMOV K2147483647
K8X100
BOOL b_result := SEL(b_select, LDI b_select LDI, MPS,AND, SET, MPP,
b_data1, b_data2); MPS ANI, RST,LD
AND b_data1
SET b_result
MPP
ANI b_data1
RST b_result
LD b_select
MPS
AND b_data2
SET b_result
MPP
ANI b_data2
RST b_result
STRING s_result := SEL(b_select, LDI b_select LDI, $MOV,LD
s_aryl,s_ary2); $MOV s ary1
s_result
LD b_select
$MOV s_ary2
s_result

6 |EC FUNCTIONS

W Function definition

BOOL SEL_E(BOOL EN, BOOL S1, ANY S2, ANY S3, ANY D1);
@ Argument

Argument Name IN/OUT Description

EN IN Execution condition (Function is executed only when the result is TRUE)

S1 IN Selection condition

S2 IN Data to be selected when S1 is FALSE

S3 IN Data to be selected when S1 is TRUE

D1 ouT Selection result
When S1is FALSE Return value = S2
When S1is TRUE Return value = S3

@ Return value
Return Value Description
BOOL Execution condition

@ Example of use
(* When execution condition X0 turns ON, the data stored in iData1 is stored)
(* into Result if the bit data in bData is FALSE, or the data stored in iData2 is *)
(* stored into Result if the bit data in bData is TRUE.)
MO := SEL_E(X0, bData, iData1, iData2, Result) ;

For the usable data type, refer to "3.2.2 About ANY type". |

6 |EC FUNCTIONS

6.8.2 Maximum value

MAX

MAX_E

TN

The specified data are searched for the maximum value.

W Function definition

ANY_SIMPLE MAX(ANY_SIMPLE S1, ANY_SIMPLE S2,...., ANY_SIMPLE Sn);

@ Argument
Argument Name IN/OUT Description
S1to Sn IN Search target data
@ Return value
Return Value Description

ANY_SIMPLE

Search result

@ Example of use

Argument Type ST Program Conversion Result Used Instruction
REAL w_Real4 := MAX(LD SM400 LD,EMOV,LDE<
w_Real1,w_Real2,w_Real3); [EMOV w_Reall
w_Real4
LDE< w_Real4
w_Real2
EMOV w_Real2
w_Real4
LDE< w_Real4
w_Real3
EMOV w_Real3
w_Real4
INT DO := MAX(D1,D2,D3); LD SM400 LD,MOV,LD<
MOV D1 DO
LD< DO D2
MOV D2 DO
LD< DO D3
MOV D3 DO
DINT w_DWord4 := MAX(- LD SM400 LD,DMOV
2147483648,0,2147483647); IDMOV K2147483647
w_DWord4
BOOL w_Bit4 := MAX(LD w_Bit1 LD,OR,OUT
w_Bit1,w_Bit2,w_Bit3); OR w_Bit2
OR w_Bit3
ouT w_Bit4
STRING w_Str4 := MAX(LD SM400 LD,MOV,LD<
"ABC","DEF","GHI"); $MOV "ABC"w_Str4
LD$< w_Str4 "DEF"
$MOV "DEF" w_Str4
LD$< w_Str4 "GHI"
$MOV "GHI"w Str4

6 |EC FUNCTIONS

® Function definiton ~ BOOL MAX_E(BOOL EN, ANY_SIMPLE S1, ANY_SIMPLE S2,...., ANY_SIMPLE
Sn, ANY_SIMPLE D1);

@ Argument
Argument Name IN/OUT Description
EN IN Execution condition (Function is executed only when the result is TRUE)
S1toSn IN Search target data
D1 ouT Search result

@ Return value

Return Value Description
BOOL Execution condition

@ Example of use
(* When execution condition X0 turns ON, the data stored in iData1, iData2 and *)
(* iData3 are searched for the maximum value, and the result is stored into *)
(* Result.)
MO := MAX_E(X0, iData1, iData2, iData3, Result) ;

For the usable data type, refer to "3.2.2 About ANY type". |

6 |EC FUNCTIONS

6.8.3 Minimum value

MIN
MIN_E

The specified data are searched for the minimum value.

W Function definition

TN

ANY_SIMPLE MIN(ANY_SIMPLE S1, ANY_SIMPLE S2,...., ANY_SIMPLE Sn);

@ Argument
Argument Name IN/OUT Description
S1to Sn IN Search target data
@ Return value
Return Value Description

ANY_SIMPLE

Search result

@ Example of use

Argument Type ST Program Conversion Result Used Instruction
REAL Real4:= LD SM400 LD,EMOV,LDE>
MIN(Real1,Real2,Real3); EMOV Real1 Reald
LDE> Real4 Real2
EMOV Real2 Real4
LDE> Real4 Real3
EMOV Real3 Real4
INT Int4:= LD SM400 LD,MOV,LD>
MIN(Int1,Int2,Int3); MOV Int1 Int4
LD> Int4 Int2
MOV Int2 Int4
LD> Int4 Int3
MOV Int3 Int4
DINT Dint4:= LD SM400 LD,DMOV,LDD>
MIN(Dint1,Dint2,Dint3); DMOV Dint1 Dint4
LDD> Dint4 Dint2
DMOV Dint2 Dint4
LDD> Dint4 Dint3
DMOV Dint3 Dint4
BOOL bBit4:= LD bBit1 LD,AND,OUT
MIN(bBIt1,bBit2,bBit3); AND bBit2
AND bBit3
ouT bBit4
STRING Str4:= LD SM400 LD,MOV,LD>
MIN(Str1,Str2,Str3); $MOV Str1 Str4
LD$> Str4 Str2
$MOV Str2 Str4
LD$> Str4 Str3
$MOV Str3 Str4

6 |EC FUNCTIONS

W Function definition

BOOL MIN_E (BOOL EN, ANY_SIMPLE S1, ANY_SIMPLE S2, ANY_SIMPLE S2,....,
ANY_SIMPLE Sn, ANY_SIMPLE D1);

@ Argument
Argument Name IN/OUT Description
EN IN Execution condition (Function is executed only when the result is TRUE)
S1toSn IN Search target data
D1 ouT Search result

@ Return value

Return Value Description

BOOL Execution condition

@ Example of use
(* BOOL MIN_E(BOOL EN, ANY_SIMPLE S1, ANY_SIMPLE S2,...., *)
(* ANY_SIMPLE Sn, ANY_SIMPLE D1); *)
MO := MIN_E(X0, iData1, iData2, iData3, Result) ;

|For the usable data type, refer to "3.2.2 About ANY type". |

6 |EC FUNCTIONS

6.8.4 Limiter

LIMIT
LIMIT_E

W Function definition

TN

The output value is controlled depending on whether the specified data is within the upper/lower limit value
(minimum/maximum output limit value) range or not.

ANY_SIMPLE LIMIT(ANY_SIMPLE MIN, ANY_SIMPLE S1, ANY_SIMPLE MAX);

@ Argument
Argument Name IN/OUT Description
MIN IN Minimum output limit value
S1 IN Input value
MAX IN Maximum output limit value
@ Return value
Return Value Description

ANY_SIMPLE

Output value

When MIN (lower limit value) > S1 (input value)

When MAX (upper limit value) < S1 (input value)

Return value = MIN (lower limit value)

Return value = MAX (upper limit value)
When MIN (lower limit value) = S1 (input value) = MAX (upper limit value)

Return value = S1 (input value)

@ Example of use

Argument Type ST Program Conversion Result Used Instruction
REAL Real4:= LDE>= Real2 Real1 LDE>=,ANDE<=,EMOV,
LIMIT(Real1,Real2,Real3); |ANDE<= Real2 Real3 LDE<,LDE>
EMOV Real2 Real4
LDE< Real2 Real1
EMOV Real1 Real4
LDE> Real2 Real3
EMOV Real3 Real4
INT Int4:= LD SM400 LD,LIMIT
LIMIT(Int1,Int2,Int3); LIMIT Int1 Int3
Int2 Int4
DINT Dint4:= LD SM400 LD,DLIMIT
LIMIT(Dint1,Dint2,Dint3); DLIMIT Dint1 Dint3
Dint2 Dint4
BOOL bBit4:= LD bBit2 LD,OR,AND,OUT
LIMIT(bBit1,bBit2,bBit3); OR bBit1
AND bBit3
ouT bBit4
STRING Str4:= LD$>= Str2 Str1 LD$>=,AND$<=,$MOV,
LIMIT(Str1,Str2,Str3); AND$<= Str2 Str3 LD$<,LD$>
$MOV Str2 Str4
LD$< Str2 Str1
$MOV Str1 Str4
LD$> Str2 Str3
$MOV Str3 Str4

6 |EC FUNCTIONS
L]

W Function definition

BOOL LIMIT_E(BOOL EN, ANY_SIMPLE MIN, ANY_SIMPLE S1, ANY_SIMPLE

MAX, ANY_SIMPLE D1);

@ Argument
Argument Name IN/OUT Description
EN IN Execution condition (Function is executed only when the result is TRUE)
MIN IN Minimum output limit value
S1 IN Input value
MAX IN Maximum output limit value
D1 ouT Output value

When MIN (lower limit value) > S1 (input value)
.. D1 = MIN (lower limit value)
When MAX (upper limit value) < S1 (input value)
... D1 = MAX (upper limit value)
When MIN (lower limit value) = S1 (input value) = MAX (upper limit value)
D1 = S1 (input value)

@ Return value

Return Value

Description

BOOL

Execution condition

@ Example of use
(* When execution condition X0 turns ON, the iData1 value is stored into Result *)
(* if the iData2 data is less than the iData1 data or minimum value, the iData3 *)
(* value is stored if the iData2 data is greater than the iData3 data or maximum *)
(* value, or the iData2 value is stored otherwise. *)
MO := LIMIT_E(X0, iData1, iData2, iData3, Result) ;

For the usable data type, refer to "3.2.2 About ANY type". |

6 |EC FUNCTIONS

6.8.5 Multiplexer

MUX
MUX_E

TN

One data is selected from among the specified data according to the specified selection condition.

W Function definition

ANY MUX (INT n, ANY S1, ANY S2,....,ANY Sn);

@ Argument
Argument Name IN/OUT Description
n IN Selection condition
S1toSn IN Selection target data
@ Return value
Return Value Description

ANY

Selection result

When n = 1, return value = S1
When n = 2, return value = S2

When n = n, return value = Sn

@ Example of use

Argument Type ST Program Conversion Result Used Instruction
REAL Real4 := LD= Int1 K1 LD=,EMOV
MUX(Int1, Real1,Real2, EMOV Real1 Real4
Real3); LD= Int1 K2
EMOV Real2 Real4
LD= Int1 K3
EMOV Real3 Real4
INT Int4:= LD= wCon1 K1 LD=,MOV
MUX(wCon1, Int1, Int2, MOV Int1 Int4
Int3); LD= wCon1 K2
MOV Int2 Int4
LD= wCon1 K3
MOV Int3 Int4
DINT Dint4:= LD= DO K1 LD=,DMOV
MUX(DO, Dint1,Dint2,Dint3); [DMOV Dint1 Dint4
LD= DO K2
DMQV Dint2 Dint4
LD= DO K3
DMQV Dint3 Dint4
BOOL bBit4:= LD= K3 K1 LD=,MPS,AND,SET,
MUX(3,bBit1,bBit2,bBit3); MPS MPP,ANI,RST
AND bBit1
SET bBit4
MPP
ANI bBit1
RST bBit4
LD= K3 K2
MPS
AND bBit2
SET bBit4
MPP
ANI bBit2
RST bBit4
LD= K3 K3
MPS
AND bBit3
SET bBit4
MPP
ANI bBit3
RST bBit4

6 |EC FUNCTIONS
L]

W Function definition

BOOL MUX_E(BOOL EN, INT n, ANY S1, ANY S2,....,ANY Sn, ANY D1);
@ Argument

Argument Name IN/OUT Description
EN IN Execution condition (Function is executed only when the result is TRUE)
n IN Selection condition
S1toSn IN Selection target data
D1 ouT Selection result

Whenn=1,D1=81
Whenn=2,D1=82

Whenn=n, D1=S8n

@ Return value

Return Value Description

BOOL Execution condition

@ Example of use

(* When execution condition X0 turns ON, one of the data stored in iData2, *)
(* iData3, iData4 and iData5 is stored into Result, after judgment made from the *)
(* data in iData1. *)

MO := MUX_E(X0, iData1, iData2, iData3, iData4, iData5, Result);

For the usable data type, refer to "3.2.2 About ANY type". |

6 |EC FUNCTIONS

6.9 Comparison Functions

6.9.1 Greater than right member (>) GT_E

TN

In all the specified data, whether the relationship of > (greater than) is satisfied or not is acquired.

m Function definiton ~ BOOL GT_E(BOOL EN, ANY_SIMPLE S1, ANY_SIMPLE S2,...., ANY_SIMPLE Sn,

BOOL D1);
@ Argument
Argument Name IN/OUT Description
EN IN Execution condition (Function is executed only when the result is TRUE)
S1to Sn IN Comparison target data
D1 OouUT Comparison result
Remarks: D1=(S1>82)&(S2>S3) &c..c..... & (Sn-1>38n)
@ Return value
Return Value Description
BOOL Execution condition
@ Example of use
Argument Type ST Program Conversion Result Used Instruction
REAL GT_E(MO, Real1,Real2, |IDE> Reall Real2 |LDE>, ANDE>0UT,
Real3, bBit1); ANDE> Real2 Reald |LD,AND,SETANI,
OUT M8191 RST
LD MO
AND M8191
SET bBit1
LD MO
ANI M8191
RST bBit1
INT GT_E(MO, Int1, Int2, In3, | D> Int1 Int2 LD>,AND>,0UT LD,
bBit1); AND> Int2 Int3 AND,SET,ANI,RST
ouT M8191
LD MO
AND M8191
SET bBit1
LD MO
ANI M8191
RST bBit1
DINT GT_E(MO, Dint1, Dint2 LDD> Dint1 Dint2 LDD>, ANDD>,0UT
Dint3, bBit1), ANDD> Dint2 Dint3 |LD, AND,SET,ANI,
ouT M8191 RST
LD MO
AND M8191
SET bBit1
LD MO
ANI M8191
RST bBit1

6 |EC FUNCTIONS

Argument Type ST Program Conversion Result Used Instruction
BOOL GT_E(MO , M100, M101, LD M100 LD,ANI,ANB,OUT,
M102, M103, bBit1); ANI M101 AND,SET,RST
LD M101
ANI M102
ANB
LD M102
ANI M103
ANB
ouT M8191
LD Mo
AND M8191
SET bBit1
LD MO
ANI M8191
RST bBit1
STRING GT_E(MO, Str1, Str2, Str3, LD$> Str1 Str2 LD$>, AND$>, OUT
bBit1), AND$> Str2 Str3 LD, AND, SET, ANI
OuT M8191 RST
LD MO
AND M8191
SET bBit1
LD MO
ANI M8191
RST bBit1

For the usable data type, refer to "3.2.2 About ANY type".

6 |EC FUNCTIONS

6.9.2 Greater than or equal to right member (>=) GE_E
\

In all the specified data, whether the relationship of = (greater than or equal to) is satisfied or not is acquired.

® Function definiton ~ BOOL GE_E(BOOL EN, ANY_SIMPLE S1, ANY_SIMPLE S2,...., ANY_SIMPLE Sn,

BOOL D1);
@ Argument
Argument Name IN/OUT Description
EN IN Execution condition (Function is executed only when the result is TRUE)
S1toSn IN Comparison target data
D1 ouT Comparison result
Remarks: D1=(S1=S2)&(S2=S3) & & (Sn-1=8n)
@ Return value
Return Value Description
BOOL Execution condition
@ Example of use
Argument Type ST Program Conversion Result Used Instruction
REAL GE_E(MO0, Real1, Real2, LDE>= Reall Real2 LDE>=, ANDE>=,
Real3, bBit1); ANDE>= Real2 Real3 |OUT,LD,AND,SET,
OuT M8191 ANI,RST
LD MO
AND M8191
SET bBit1
LD MO
ANI M8191
RST bBit1
INT GE_E(MO, Int1, Int2, Int3, LD>= Int1 Int2 LD>=, AND>=,0UT
bBit1), AND>= Int2 Int3 LD,AND,SET,ANI,
OUT M8191 RST
LD MO
AND M8191
SET bBit1
LD MO
ANI M8191
RST bBit1
DINT GE_E(MO0, Dint1, Dint2, LDD>= Dint1 Dint2 LDD>=, ANDD>=,
Dint3, bBit1) ANDD>= Dint2 Dint3 ~ |OUT,LD,AND,SET
OuT M8191 ANI,RST
LD MO
AND M8191
SET bBit1
LD MO
ANI M8191
RST bBit1

6 |EC FUNCTIONS

Argument Type ST Program Conversion Result Used Instruction
BOOL GE_E(MO0, M100, M101, LD M100 LD,ORI.ANB,OUT
M102, M103, bBit1) ORI M101 AND,SET,ANI,RST
LD M101
ORI M102
ANB
LD M102
ORI M103
ANB
ouT M8191
LD MO
AND M8191
SET bBit1
LD MO
ANI M8191
RST bBit1
STRING GE_E(MO, Str1, Str2, Str3, [LD$>= Str1 Str2 LD$>=, AND$>=,
bBit1) AND$>= Str2 Str3 OUT,LD,AND,SET,
ouT M8191 LD,ANI,RST
LD MO
AND M8191
SET bBit1
LD MO
ANI M8191
RST bBit1

For the usable data type, refer to "3.2.2 About ANY type".

6 |EC FUNCTIONS

6.9.3Equal (=) EQ_E

TN

In all the specified data, whether the relationship of = (equal) is satisfied or not is acquired.

® Function definiton ~ BOOL EQ_E(BOOL EN, ANY_SIMPLE S1, ANY_SIMPLE S2,...., ANY_SIMPLE Sn,

BOOL D1);
@ Argument
Argument Name IN/OUT Description
EN IN Execution condition (Function is executed only when the result is TRUE)
S1to Sn IN Comparison target data
D1 ouT Comparison result
Remarks: D1=(S1=S2)&(S2=83) &cccueuu. & (Sn-1=38n)
@ Return value
Return Value Description
BOOL Execution condition
@ Example of use
Argument Type ST Program Conversion Result Used Instruction
REAL b_result = EQ_E(b_select, || pe_ | gatat r_data2 |LDE=, ANDE=,0UT
r_data1, r_data2, r_data3,
b_data1); ANDE= r_data2 r_data3 [LD,AND,SET,ANI,
OUT M8191 RST
LD b_select
AND M8191
SET b_data1
LD b_select
ANI M8191
RST b_data1
LD b_select
ouT b_result
INT Eg)o_OE-(‘MZ 0,010,020, D30, |-P= D10 D20 LD=, AND=, OUT
M200); AND= D20 D30 LD,AND,SET,ANI
OUT M8191 RST
LD M20
AND M8191
SET M200
LD M20
ANI M8191
RST M200
LD M20
ouT B100
DINT 353222353;59&.3'_??;3 LDD= di_datal di data2 |LDD=, ANDD=,0UT,
b_data1); ANDD= di_data2 di_data3 [LD,AND,SET,ANI,
OUT M8191 RST
LD b_select
AND M8191
SET b_data1
LD b_select
ANI M8191
RST b_data1
LD b_select
ouT b_result

6 |EC FUNCTIONS

Argument Type ST Program Conversion Result Used Instruction
BOOL ;_11;;3;(1? 1:’=XE1Q27_|I\E/I(2t(>)_)s;elect, LD X10 (L)DR é,i‘?\l Ié% EATN:Q o
AND X11 ’ ' ’
LDI X10
ANI X11
ORB
LD X11
AND X12
LDI X11
ANI X12
ORB
ANB
ouT M8191
LD b_select
AND M8191
SET M20
LD b_select
ANI M8191
RST M20
LD b_select

ouT b_result

STRING b_result := EQ_E(b_select, LD$= s aryl s_ary2 |LD$=,0UT,LD,AND,

s_ary1, s_ary2, b_data1l); ouT M8191 SET.ANIRST

LD b_select
AND M8191

SET b_data1
LD b_select
ANI M8191

RST b_data1
LD b_select

ouT b_result

For the usable data type, refer to "3.2.2 About ANY type".

6 |EC FUNCTIONS

6.9.4 Less than or equal to right member (<=) LE_E

TN

In all the specified data, whether the relationship of = (less than or equal to) is satisfied or not is acquired.

m Function definiton ~ BOOL LE_E(BOOL EN, ANY_SIMPLE S1, ANY_SIMPLE S2,...., ANY_SIMPLE Sn,

BOOL D1);
@ Argument
Argument Name IN/OUT Description
EN IN Execution condition (Function is executed only when the result is TRUE)
S1toSn IN Comparison target data
D1 ouT Comparison result
Remarks: D1=(S1=S2)&(S2=S3) & & (Sn-1=3Sn)
@ Return value
Return Value Description
BOOL Execution condition
@ Example of use
Argument Type ST Program Conversion Result Used Instruction
REAL b_result := LE_E(b_select, [DE<= r datal r_data2 |LDE<=, ANDE<=,
r_datal,r_data2,r_data3, |A\NDE<= r data2 r data3 |OUT,LD,AND,SET,
b_datal) OUT M8191 ANI,RST
LD b_select
AND M8191
SET b_data1
LD b_select
ANI M8191
RST b_data1
LD b_select
ouT b_result
INT B100 := LD<= D10 D20 LD<=, AND<=,0UT
LE_E(M20, D10, D20, D30, |AND<= D20 D30 LD,AND,SET,ANI,
M200) oUT M8191 RST
LD M20
AND M8191
SET M200
LD M20
ANI M8191
RST M200
LD M20
OouT B100

6 |EC FUNCTIONS

Argument Type

ST Program

Conversion Result

Used Instruction

DINT

b_result := LE_E(b_select,
di_data1, di_data2, di_data3,

LDD<= di_datal di_data2
ANDD<= di_data2 di_data3

LDD<=, ANDD<=,
OUT,LD,AND,SET,

b_data1); ouT M8191 ANLRST
LD b_select
AND M8191
SET b_data1
LD b_select
ANI M8191
RST b_data1
LD b_select
ouT b_result
BOOL b_result := LE_E(b_select, LDI X10 LDI,OR,ANB,OUT,
X10, X11, X12, M20); OR X11 AND,SET,ANI,RST
LDI X11
OR X12
ANB
ouT M8191
LD b_select
AND M8191
SET M20
LD b_select
ANI M8191
RST M20
LD b_select
ouT b_result
STRING b_result := LE_E(b_select, LD$<= s_aryl s_ary2 |LD$<=0UT,LD,
s_ary1, s_ary2, b_datal); ouT M8191 AND,SET,ANI,RST
LD b_select
AND M8191
SET b_data1
LD b_select
ANI M8191
RST b_data1
LD b_select
ouT b _result

For the usable data type, refer to "3.2.2 About ANY type".

6 |EC FUNCTIONS

6.9.5 Less than right member (<) LT_E

TN

In all the specified data, whether the relationship of < (less than) is satisfied or not is acquired.

® Function definiton ~ BOOL LT_E(BOOL EN, ANY_SIMPLE S1, ANY_SIMPLE S2,...., ANY_SIMPLE Sn,

BOOL D1);
@ Argument
Argument Name IN/OUT Description
EN IN Execution condition (Function is executed only when the result is TRUE)
S1toSn IN Comparison target data
D1 ouT Comparison result
Remarks: D1=(S1<S2)&(S2<83) & ...ccveevvuene & (Sn-1<8n)
@ Return value
Return Value Description
BOOL Execution condition
@ Example of use
Argument Type ST Program Conversion Result Used Instruction
REAL b_result := LT_E(b_select, [DE< r datal r_data2 |LDE<, ANDE<,0OUT,
r_datal,r_data2,r_datad, |ANDE< r data2 r_data3 |LD,AND,SETANI,
b_data) OUT M8191 RST
LD b_select
AND M8191
SET b_data1
LD b_select
ANI M8191
RST b_data1
LD b_select
ouT b_result
INT B100 := LD< D10 D20 LD<, AND<,0UT,
LT_E(M20, D10, D20, D30, |anND< D20 D30 LD,SET,ANI,RST
M200) OUT M8191
LD M20
AND M8191
SET M200
LD M20
ANI M8191
RST M200
LD M20
ouT B100

6 |EC FUNCTIONS

Argument Type

ST Program

Conversion Result

Used Instruction

DINT

b_result := LT_E(b_select,
di_data1, di_data2, di_datag3,

LDD< di_datal di_data2

LDD<, ANDD<,0UT,

ANDD< di_data2 di_data3 [LD,AND,SET,ANI,
b_datal) ouT M8191 RST
LD b_select
AND M8191
SET b_data1
LD b_select
ANI M8191
RST b_data1
LD b_select
ouT b_result
BOOL b_result := LT_E(b_select, LDI X10 LDI,AND,ANB,OUT,
X10, X11, X12, M20); AND X11 LD,SET,ANILRST
LDI X11
AND X12
ANB
ouT M8191
LD b_select
AND M8191
SET M20
LD b_select
ANI M8191
RST M20
LD b_select
ouT b_result
STRING b_result := LT_E(b_select, LD$< s aryl s_ary2 |LD$<,OUT,LD,AND,
s_aryl, s_ary2, b_datal); ouT M8191 SET,ANI,RST
LD b_select
AND M8191
SET b_data1
LD b_select
ANI M8191
RST b_data1
LD b_select
ouT b _result

For the usable data type, refer to "3.2.2 About ANY type".

6 |EC FUNCTIONS

6.9.6 Unequal (<>) NE_E

TN

In all the specified data, whether the relationship of = (unequal) is satisfied or not is acquired.

® Function definiton ~ BOOL NE_E(BOOL EN, ANY_SIMPLE S1, ANY_SIMPLE S2, BOOL D1);

@ Argument
Argument Name IN/OUT Description
EN IN Execution condition (Function is executed only when the result is TRUE)
S1 IN Comparison target data
S2 IN Comparison target data
D1 OouUT Comparison result
Remarks: D1 =(S1-S2)
@ Return value
Return Value Description
BOOL Execution condition
@ Example of use
Argument Type ST Program Conversion Result Used Instruction
REAL b_result := NE_E(b_select, [DE<> r datal r_data2 |LDE<>0UT,LD,
r_data1, r_data2, b_data1l); ouT M8191 AND,SET,ANI,RST
LD b_select
AND M8191
SET b_data1
LD b_select
ANI M8191
RST b_data1
LD b_select
ouT b_result
INT B100 := LD<> D10D20 LD<>,0UT,LD,AND,
NE_E(M20, D10, D20, M200 ouT M8191 SET,ANI,RST
) LD M20
AND M8191
SET M200
LD M20
ANI M8191
RST M200
LD M20
ouT B100
DINT b_result :== NE_E(b_select, (| DD<> di data1 di_data2 |LDD<>,0UT,LD,AND,
di_data1, di_data2, b_data1); ouT M8191 SET,ANI,RST
LD b_select
AND M8191
SET b_data1
LD b_select
ANI M8191
RST b_data1
LD b_select
ouT b result

6 |EC FUNCTIONS

Argument Type ST Program Conversion Result Used Instruction
BOOL b_result := NE_E(b_select, |LD X10 LD,ANI,LDI,AND,
X10, X11, M20); ANI X11 ORB,0OUT,SET,RST
LDI X10
AND X11
ORB
ouT M8191
LD b_select
AND M8191
SET M20
LD b_select
ANI M8191
RST M20
LD b_select

ouT b result

STRING b_result:= NE_E(b_select, |LD$<> s aryl s ary2 |LD$<>OUT,LD,AND,

s_aryl,s ary2,b_datal), |1 M8191 SET,ANI,RST

LD b_select
AND M8191

SET b_data1
LD b_select
ANI M8191

RST b_data1
LD b_select

ouT b result

For the usable data type, refer to "3.2.2 About ANY type".

6 |EC FUNCTIONS

6.10 Character String Functions

6.10.1 Character string length acquisition

W Function definition

LEN
LEN_E
\
The character string length of the specified character string data is acquired.
INT LEN (STRING S1);
@ Argument
Argument Name IN/OUT Description
S1 IN Data whose character string length will be acquired (character string

W Function definition

data)

@ Return value

Return Value

Description

INT

Character string length result (BIN 16-bit data)

Remarks: This function cannot be used with the Basic model QCPU.

@ Example of u

se

Argument Type ST Program Conversion Result Used Instruction
STRING i_data1:= LEN(s_ary1); LD SM400 LD,LEN
LEN s ary1i datal

BOOL LEN_E(BOOL EN, STRING S1, INT D1);

@ Argument
Argument Name IN/OUT Description
EN IN Execution condition (Function is executed only when the result is TRUE)
S1 IN Data whose character string length will be acquired (character string
data)
D1 ouT Character string length result (BIN 16-bit data)

@ Return value

Return Value

Description

BOOL

Execution condition

@ Example of use
(* When execution condition X0 turns ON, the length of the character string)
(* stored in sData1 is acquired and stored into Result.

MO := LEN_E(X0, sData, Result) ;

%)

6 |EC FUNCTIONS

6.10.2 Acquisition from start position of character string LEFT

LEFT E
\

The specified n characters of character string is acquired, starting at the left of the specified character string
(head of the character string).

W Function definition

W Function definition

STRING LEFT (STRING S1, INT n);

@ Argument
Argument Name IN/OUT Description
S1 IN Data to be acquired (character string data)
n IN Number of characters to be acquired (BIN 16-bit data)
@ Return value
Return Value Description

STRING

Acquisition result (character string data)

Remarks: This function cannot be used with the Basic model QCPU.

Secure the area of n+1 characters as the data area that will store the

acqui

red character string data.

@ Example of use

Argument Type ST Program Conversion Result Used Instruction
STRING s_ary1:=LEFT (s_ary2,i data1);|LD SM400 LD,LEFT
LEFT s ary2 s ary1i datal
BOOL LEFT _E(BOOL EN, STRING S1, INT n, STRING D1);
@ Argument
Argument Name IN/OUT Description
EN IN Execution condition (Function is executed only when the result is TRUE)
S1 IN Data to be acquired (character string data)
n IN Number of characters to be acquired (BIN 16-bit data)
D1 ouT Acquisition result (character string data)

@ Return value

Return Value

Description

BOOL

Execution condition

@ Example of use
(* When execution condition X0 turns ON, the character string of the number of *)
(* characters specified in iData is acquired, starting at the left of the character
(* string data stored in sData, and stored into Result.
MO := LEFT_E(X0, sData, iData, Result) ;

%)
%)

6 |EC FUNCTIONS

6.10.3 Acquisition from end of character string RIGHT
RIGHT_E

TN

The specified n characters of character string is acquired, starting at the right of the specified character string
(end of the character string).

W Function definiton STRING RIGHT (STRING S1, INT n);

@ Argument
Argument Name IN/OUT Description
S1 IN Data to be acquired (character string data)
n IN Number of characters to be acquired (BIN 16-bit data)

@ Return value

Return Value Description

STRING Acquisition result (character string data)

Remarks: This function cannot be used with the Basic model QCPU.

Secure the area of n+1 characters as the data area that will store the
acquired character string data.

@ Example of use

Argument Type ST Program Conversion Result Used Instruction
STRING s_ary1 := RIGHT(s_ary2, LD SM400 LD,RIGHT
i_datal); RIGHT s_ary2
s_aryl
i data1

m Function definiton ~ BOOL RIGHT _E(BOOL EN, STRING S1, INT n, STRING D1);

@ Argument
Argument Name IN/OUT Description
EN IN Execution condition (Function is executed only when the result is TRUE)
S1 IN Data to be acquired (character string data)
n IN Number of characters to be acquired (BIN 16-bit data)
D1 ouT Acquisition result (character string data)

@ Return value

Return Value Description
BOOL Execution condition

@ Example of use
(* When execution condition X0 turns ON, the character string of the number of *)
(* characters specified in iData is acquired, starting at the right of the character *)
(* string stored in sData, and stored into Result. *)
MO := RIGHT_E(X0, sData, iData, Result) ;

6 |EC FUNCTIONS

6.10.4 Acquisition from specified position of character string MID

MID_E

TN

The specified n characters of character string data is acquired, starting at the specified position from the left of
the specified character string (head of the character string).

W Function definition

W Function definition

STRING MID(STRING S1, INT n, INT POS);

@ Argument
Argument Name IN/OUT Description
S1 IN Data to be acquired (character string data)
n IN Number of characters to be acquired (BIN 16-bit data)
POS IN Head position of data to be acquired (BIN 16-bit data)

@ Return value

Return Value

Description

STRING

Acquisition result (character string data)

Remarks: This function cannot be used with the Basic model QCPU.
Secure the area of n+1 characters as the data area that will store the
acquired character string data.

@ Example of use

Argument Type ST Program Conversion Result Used Instruction
STRING s_aryl:= LD SM400 LD,MOV,MIDR

MID(s_ary2, i_data1, i_data2 [MOV i_data1l
); D10239
MOV i_data2
D10238

MIDR s ary2 s_aryl
D10238

BOOL MID_E(BOOL EN, STRING S1, INT n, INT POS, STRING D1);

@ Argument
Argument Name IN/OUT Description
EN IN Execution condition (Function is executed only when the result is TRUE)
S1 IN Data to be acquired (character string data)
n IN Number of characters to be acquired (BIN 16-bit data)
POS IN Head position of data to be acquired (BIN 16-bit data)
D1 ouT Acquisition result (character string data)

@ Return value

Return Value

Description

BOOL

Execution condition

@ Example of use
(* When execution condition X0 turns ON, the specified number of characters *)
(* stored in iData1 are acquired, starting at the iData2 position from the head of *)
(* the character string stored in sData, and stored into Result. *)
MO := MID_E(X0, sData, iData1, iData2, Result) ;

6 |EC FUNCTIONS

6.10.5 Concatenation of character strings

CONCAT
CONCAT E

TN

All the specified character strings are concatenated.

W Function definition

W Function definition

STRING CONCAT(STRING S1, STRING S2,....,.STRING Sn);

@ Argument
Argument Name IN/OUT Description
S1to Sn IN Data to be concatenated (character string data)
@ Return value
Return Value Description

STRING

Concatenation result (character string data)

Remarks: This function cannot be used with the Basic model QCPU.
Secure the area of the number of concatenated characters + 1 character as

the data area that will store the concatenated character string data.

@ Example of use

Argument Type ST Program Conversion Result Used Instruction
STRING s_result := LD SM400 LD,$MOV,$+

CONCAT(s_ary1, s_ary2, $MOV s_ary1

s_ary3); s_result
$+ s_ary2

s_result
$+ s_ary3

s_result

BOOL_ CONCAT_E(BOOL EN, STRING S1, STRING S2,....,STRING Sn, STRING

D1);
@ Argument
Argument Name IN/OUT Description
EN IN Execution condition (Function is executed only when the result is TRUE)
S1to Sn IN Data to be concatenated (character string data)
D1 OouT Concatenation result (character string data)

@ Return value

Return Value

Description

BOOL

Execution condition

@ Example of use
(* When execution condition X0 turns ON, the character string data stored in

(* sData1 and sData2 are concatenated, and the result is stored into Result.

MO := CONCAT_E(X0, sData1, sData2, Result) ;

%)
%)

6 |EC FUNCTIONS

6.10.6 Insertion of character string into specified position INSERT

INSERT_E

TN

The character string data is inserted into the specified position and later of the specified character string data.

W Function definition

W Function definition

STRING INSERT(STRING S1, STRING S2, INT POS);

@ Argument
Argument Name IN/OUT Description
S1 IN Data to be inserted (character string data)
S2 IN Data into which above data will be inserted (character string data)
POS IN Insertion position (BIN 16-bit data)
@ Return value
Return Value Description
STRING Insertion result (character string data)

Remarks: This function cannot be used with the Basic model QCPU.
Secure the area of the number of characters after insertion + 1 character as
the data area that will store the character string data after insertion.

@ Example of use

Argument Type ST Program Conversion Result Used Instruction
STRING w_Str3 := LD SM400 LD,$+,AND<>MOV
INSERT(w_Str1,w_Str2,w_Word1); [$+ w_Str2 w_Str1|,-, MIDW,LEN
w_Str3

AND<> w_Word1 K1
MOV K1 D10238

- w_Word1 K1
D10239

MIDW w_Str1 w_Str3

D10238

MoV w_Word1
D10238

LEN w_Str2
D10239

MIDW w_Str2 w_Str3
D10238

BOOL INSERT_E(BOOL EN, STRING S1, STRING S2, INT POS, STRING D1);
@ Argument

Argument Name IN/OUT Description
EN IN Execution condition (Function is executed only when the result is TRUE)
S1 IN Data to be inserted (character string data)
S2 IN Data into which above data will be inserted (character string data)
POS IN Insertion position (BIN 16-bit data)
D1 OouT Insertion result (character string data)

@ Return value

Return Value Description

BOOL Execution condition

@ Example of use
(* When execution condition X0 turns ON, the character string data in sData2 is *)
(* inserted into the iData position from the head of the character string datain ~ *)
(* sData1, and the result is stored into Result. *)
MO := INSERT_E(X0, sData1, sData2, iData, Result) ;

6 |EC FUNCTIONS

6.10.7 Deletion of character string from specified position DELETE
DELETE_E

TN

n characters of character string is deleted from the specified position and later of the specified character string.
W Function definition STRING DELETE(STRING S1, INT n, INT POS);

@ Argument
Argument Name IN/OUT Description
S1 IN Data to be deleted (character string data)
n IN Number of characters to be deleted (BIN 16-bit data)
POS IN Deletion position (BIN 16-bit data)

@ Return value

Return Value Description

STRING Deletion result (character string data)

Remarks: This function cannot be used with the Basic model QCPU.

Secure the area of the number of characters after deletion + 1 character as
the data area that will store the character string data after deletion.

If the deletion position POS is 0, n characters of character string will be
deleted, starting at the end (right) of the data to be deleted S1.

@ Example of use

Argument Type ST Program Conversion Result Used Instruction
STRING w_Str2 := DELETE(LD SM400 LD,LEN,-,RIGHT,
w_Str1,w_Word1, w_Word2); |LEN w_Str1 AND<> MOV,MIDW
D10238
- w_Word1
D10238
RIGHT w_Str1 w_Str2
D10238
- w_Word2 K1
D10239
AND<> 10239 KO
MOV K1 D10238
MIDW w_Str1
w_Str2
D10238
B Function definition BOOL DELETE_E(BOOL EN, STRING S1, INT n, INT POS, STRING D1);
@ Argument
Argument Name IN/OUT Description
EN IN Execution condition (Function is executed only when the result is TRUE)
S1 IN Data to be deleted (character string data)
n IN Number of characters to be deleted (BIN 16-bit data)
POS IN Deletion position (BIN 16-bit data)
D1 OouT Deletion result (character string data)

Remarks: Secure the area of the number of characters after deletion + 1 character as
the data area that will store the character string data after deletion.

@ Return value
Return Value Description
BOOL Execution condition

@ Example of use
(* When execution condition X0 turns ON, the character string of the number of *)
(* characters specified in iData1 is deleted, starting at iData2 from the head of *)
(* the character string data in sData, and the result is stored into Result.))
MO := DELETE_E(X0, sData, iData1, iData2, Result) ;

6 |EC FUNCTIONS

6.10.8 Replacement of character string from specified position REPLACE
REPLACE_E

TN

n characters of character string data starting at the specified position of the specified character string data is
replaced by the specified character string.
m Function definition ~ STRING REPLACE(STRING S1, STRING S2, INT n, INT POS);

@ Argument
Argument Name IN/OUT Description
S1 IN Data to be replaced (character string data)
S2 IN Data that will replace (character string data)
n IN Number of characters to be replaced (BIN 16-bit data)

POS IN Replacement start position (BIN 16-bit data)

@ Return value

Return Value Description
STRING Replacement result (character string data)

Remarks: This function cannot be used with the Basic model QCPU.

Secure the area of the number of characters after replacement + 1 character

as the data area that will store the character string data after replacement.
@ Example of use

Argument Type ST Program Conversion Result Used Instruction
STRING w_Str3 := LD SM400 LD,$MOV,MOV,
REPLACE(w_Str1,w_Str2, |$MOV ~ w_Str1 w_Str3|MIDW
w_Word1, MOV w_Word1
w_Word2); D10239
MOV w_Word2
D10238
MIDW w_Str2 w_Str3
D10238

m Function definiton ~ BOOL REPLACE_E(BOOL EN, STRING S1, STRING S2, INT n, INT POS, STRING

D1);
@ Argument
Argument Name IN/OUT Description
EN IN Execution condition (Function is executed only when the result is TRUE)
S1 IN Data to be replaced (character string data)
S2 IN Data that will replace (character string data)
n IN Number of characters to be replaced (BIN 16-bit data)
POS IN Replacement start position (BIN 16-bit data)
D1 ouT Replacement result (character string data)

Remarks: Secure the area of the number of characters after replacement + 1 character

as the data area that will store the character string data after replacement.

@ Return value

Return Value Description

BOOL Execution condition

@ Example of use
(* When execution condition X0 turns ON, the character string data of the
(* number of characters specified in iData1, starting at iData2 from the head of
(* the character string data in sData1, is replaced by the character string data in
(* sData2, and the result is stored into Result.
MO := REPLACE_E(X0, sData1, sData2, iData1, iData2, Result) ;

.
W
i
“)

6 |EC FUNCTIONS

6.10.9 Search for character string from specified position

FIND
FIND_E

TN

The specified character string is searched for the specified character string.

W Function definition

W Function definition

INT FIND(STRING S1, STRING S2),

@ Argument
Argument Name IN/OUT Description
S1 IN Character string to be searched (character string data)
S2 IN Character string to be searched for (character string data)
@ Return value
Return Value Description

INT

Position where character string is found first (BIN 16-bit data)

Remarks: This function cannot be used with the Basic model QCPU.
If the character string is not found, the return value turns to 0.

@ Example of use

w Word1 K1

Argument Type ST Program Conversion Result Used Instruction
STRING w_Word1:= LD SM400 LD,INSTR
FIND(w_Str1,w_Str2); INSTR w_Str2 w_Str1

BOOL FIND_E(BOOL EN, STRING S1, STRING S2, INT D1);

@ Argument
Argument Name IN/OUT Description
EN IN Execution condition (Function is executed only when the result is TRUE)
S1 IN Character string to be searched (character string data)
S2 IN Character string to be searched for (character string data)
D1 OouT Position where character string is found first (BIN 16-bit data)

Remarks: If the character string is not found, the return value turns to 0.

@ Return value

Return Value

Description

BOOL

Execution condition

@ Example of use
(* When execution condition X0 turns ON, the character string data in sData1 is *)

(* searched for the character string data in sData2, and the position where the

(* character string is found first is stored into Result.

MO := FIND_E(X0, sData1, sData2, Result) ;

%)
%)

7 ERRORLIST

7 ERROR LIST
This chapter explains the errors that may occur during conversion of a created ST
program.
For the execution errors that may occur when the ST program is written to the CPU
module, refer to the "MELSEC-Q/L Programming Manual (Common Instructions)",
"QCPU User's Manual (Hardware Design, Maintenance and Inspection)" or "MELSEC-
L CPU Module User's Manual (Hardware Design, Maintenance and Inspection)".
@ When conversion error occurs
The error dialog corresponding to the error in the program is displayed.
The maximum number of errors that may occur in a single program is 1000. Errors
in excess of 1000 errors are not displayed in the error list.
@ About conversion error indication
More than one error may be displayed for a single program statement, or more than
one message may be displayed for a single error.
@ Conversion error list (error message, cause, corrective action)
No. Error Message Cause Corrective Action
The character string that cannot be analyzed exists.
As character strings that cannot be analyzed, there
are the following examples.
Example 1: 2##
The format is wrong.
An unanalyzable character | Example 2: STRING type: STRV1 is defined. Correct the character

exists. (C1009)

STRV1 := $"abc"; string. 7

The $ symbol is used.
Example 3: DO :=!10;

The ! symbol is used.
Example 4: J25|\K4X0 := 5;

The | symbol is used.

An unanalyzable operator The operator that cannot be analyzed exists.

2 . Correct the operator.
exists. (C1010) Example 1: YO : = MO => M1;
The description of the real number constant is illegal.
As illegal descriptions, there are the following
examples.
Example 1: REAL type : RealV1 is defined.
3 The real number constant RealV1:=1,; Correct the description of
is wrong. (C1013) The format of the real number constant the real number constant.
is wrong.
Example 2: RealV1 := 0.1E;
The format of the real number constant
is wrong.
7-1 7-1

7 ERRORLIST

No.

Error Message

Cause

Corrective Action

Description of a device is
wrong. (C1014)

The description of the device is illegal.
As illegal descriptions, there are the following
examples.
Example 1: D0.10 := TRUE;
The bit No. specification of the word
device is wrong.
Example 2: DO@ := 0;

Correct the description of
the device.

Description of a device is
wrong. (C1017)

The description of the device is illegal.
As an illegal description, there is the following
example.
Example 1: DO := %MMWO0.10;
The device was described in an
unusable format.

Correct the description of
the device.

Description of a comment
is wrong. (C1018)

The description of the comment is illegal.
It is not written in the "(*" "*)" format.
As illegal descriptions, there are the following
examples.
Example 1: (* *

A parenthesis is insufficient.
Example 2: (*(*

The parenthesis and * format is wrong.

Example 3: (* *)

There is a space between "*" and ")".
Example 4: (*aaaaa)

* is insufficient.

Correct the description of
the comment.

Description of a character
constant is wrong. (C1019)

The description of the character string constant is
illegal.
As illegal descriptions, there are the following
examples.
Example 1: STRING type : STRV1 is defined.
STRV1 :="";
Example 2: STRV1 :=";
" is insufficient.
Example 3: STRV1 :=" character ";
There is ' within the character string
Example 4: STRV1 :="$";
The method of using the escape

sequence is wrong.

Correct the description of
the character string
constant.

7 ERRORLIST

wrong. (C1020 to C1023)

Example 3: W_TMP := 2#0;

Example 4: W_TMP := DT#1900-01-01,
00:00:00;

Example 5: W_TMP := D#1994-06;

Example 6: W_TMP := TOD#09:30:61;

No. Error Message Cause Corrective Action
The unsupported data type was used, or the constant
was described wrongly.
As illegal descriptions, there are the following
examples. The used data type is not
.) Example 1: W_TMP := TIME#1100_0101; supported.
8 Description of a constant is Example 2: W_TMP := T#0; Correct the data type.

Correct the description of
the constant.

Variable 1" undefined.

An undefined variable was used.
There are the following examples of using undefined
variables.
Example 1: |_TEST :=1;
The label is used without label setting

9 | (C1028) . Define the used variable.
. being made.
(Variable name enters *1.)
Example 2: DO := HAAH,;
Characters other than A to F are used in
hexadecimal.
Example 3: DO := 1234 ;
The method of specifying the array element is wrong.
An error is in element Example 1: Word type array label: W_ARY _
. Correct the description of
10 | specification of array. W_ARY[0,1] :=1; th
e array.
(C1033) The array was described in the format y
different from the defined one.
An undefined function was used.
Function ™1" is undefined. There is the following example of using an undefined o
. Correct the description of
11 | (C1049) function. -
e function name.
(Function name enters *1.) | Example 1: Real number type label: RE_1
MO := OS_E_MD(TRUE,E1.0,RE_1);
The variable name has more than 16 characters, or
the device name is too long.
. There are the following program examples that will Use the defined variable
A variable name or a .
i . result in an error. name.
12 | device name is too long. L
(C1077) Example 1: abcde678901234567 := D10; Correct the description of
Example 2: DO := DO00000 « « « the device.
00000000000001;
The device name is too long.
7-3 7-3

7 ERRORLIST

No. Error Message Cause Corrective Action
Other than a constant was used in the argument for
which a constant should be specified.
. There are the following program examples that will
It is used except a constant .
for the %d argument. resultin an error.)
Example 1: M1 := ROL(M0,X0); Use a constant in the
13 | (C2021) . N
. Other than a constant was used in specified argument.
(Argument error location
enters *1.) argument No. 2.
Example 2: D100 := SHL(DO,D1);
Other than a constant was used in
argument No. 2.
Wrong grammar was described.
There are the following examples where grammar
will be illegal.
Example 1: DO : 0;
"="is not described in the assignment
statement.
Example 2: FOR ARY[0] :=0 TO D10
BY D20 DO
D100 := D100+1;
END_FOR;
The array element was specified in the
repeat variable.
14 | Syntax error. (C2054) Example 3: FOR STRW_TMP :=0 TO D10 Correct the grammar.
BY D20 DO
D100 := D100+1;
END_FOR;
The structure element was specified in
the repeat variable.
Example 4: DO := 1++++++++2;
The method of using the + operator is
wrong.
Example 5: Word type array : IntAry1
DO := IntAry1[[0;
The method of describing the array is
wrong.
7-4 7-4

7 ERRORLIST

No. Error Message Cause Corrective Action
. Describe ";" at the end of
The statement is not ended by ";".
' missi 8006 the statement.
missing. (C8006) , o Describe "END FOR" in the
(END FOR "END FOR" is not described in the FOR syntax.
) FOR syntax.
') . . Describe "END WHILE" in
END WHILE "END WHILE" is not described in the WHILE syntax.
the WHILE syntax.

15 END FOR . o .) . "
END_REPEAT END_REPEAT" is not described in the REPEAT F)escrlbe END_REPEAT
END_CASE syntax. in the REPEAT syntax.

. . . Describe "END _CASE" in
or "END_CASE" is not described in the CASE .
= the CASE conditional
END_IF conditional statement.
. statement.

enters *1.)

"END_IF" is not described in the IF conditional Describe "END_IF" in the

statement. IF conditional statement.

16 EXIT outside a loop The EXIT syntax is described outside the loop Describe the EXIT syntax
statement. (C8009) syntax. in the loop syntax.

The unsupported data type was used. .
o . . i The used data type is not

17 Description of a constantis | Example 1: Timer label: wTime subborted
wrong. (C8010) wTime = T#1111111111111111 pported.

1 Correct the data type.
S,
The undefined FB was called.
There are the following examples of using undefined
FBs.
Undefined FB was called. Example 1: FB_1(); i
18) Define the used FB.
(C8011) The undefined FB is called.
Example 2: Word type label: W_TMP
W_TMP();
The variable other than FB is described.
No value has been specified in the input or /O
variable of the FB.
There are the following examples that will result in
. . the above error.
The value is not specified .
X Example 1: 1/O variable: IO_TEST1
to IN/IN_OUT variable ™1".] . .)
Diverted FB name: FB1 Specify a value in the input
19 | (C8012) .
. FB1(); or I/O variable of the FB.
(Input or 1/O variable name .
Example 2: 1/O variable: IO_TEST1
enters *1.))
Diverted FB name: FB1
FB1(IO_TEST);
No value is assigned to the input
variable.
7-5 7-5

7 ERRORLIST

No.

Error Message

Cause

Corrective Action

20

Type mismatch at
parameter *1'. (C8013)
(Argument name enters *1.)

The FB call argument does not match in type with the

specified value or variable.
There are the following examples that will result in
the above error.
Example 1: Input variable (word type): IN1
Diverted FB name: FB1
FB1(IN1 := TRUE);
A bit type variable is specified in the
word type input variable.
Example 2: Input variable (word type): IN1
Output variable (word type): OUT1
Diverted FB name: FB1
Double word type: DIN1
FB1(IN1 := DIN1);
A double word type variable is specified
in the word type input variable.

Match the type with that of
the FB call argument.

21

The variable which cannot
substitute a value for
IN_OUT/OUTPUT variable
cannot be specified. (1)
(C8014)

(/O or output variable
name enters *1.)

The variable to which a value cannot be assigned
has been specified as the 1/O variable or output
variable of the called FB.
Example 1: 1/O variable: IO_TEST1

I0_TEST1 := TRUE;

Diverted FB name: FB1

A constant is passed to the 1/O variable.

Example 2: Input variable: IN1
Output variable: OUT1
Diverted FB name: FB1
Word type constant label: wCon
FB1(IN1 :=1,0UT1 := wCon);
A constant label is passed to the word
type output variable.

Specify a variable to which
a value can be assigned as
the I/O variable or output
variable of the called FB.

22

Variable "1' which cannot
be used as an argument of
FB is used. (C8015)
(Variable name enters *1.)

The value is passed to the variable other than the
input, output or 1/O variable of the called FB.
There is the following example that will result in the
above error.
Example 1: Input variable IN1

Output variable OUT1

Variable TEST1

Diverted FB name: FB1

FB1(TEST1 := X10);

For an FB call, do not use
the variable other than the
input, output or I/O variable
of the FB.

7 ERRORLIST

(Argument name enters *1.)

Diverted FB name: FB1
FB1(INOUT1 := TRUE,INOUT1 :=
FALSE);

No. Error Message Cause Corrective Action
The same argument is used two or more times for an
. FB call.
Input 1" was multiply . . Do not use the same
. Example 1: /O variable (bit type) : INOUT1
23 | assigned. (C8016) argument more than once

for an FB call.

24

Input 1" unknown.
(C8017)
(Argument name enters *1.)

The argument of the FB to be called is not defined.

Example 1: 1/O variable (bit type) : INOUT1
Diverted FB name: FB1
FB1(TMP_INOUT1 := TRUE);

Define the argument of the
FB to be called.

25

Invalid integer literal 1.
(C8018)
(Integer value enters *1.)

The integer value is illegal.

Example 1: D1 := 9999999999 ;
The integer value is greater than the
allowed range.

Correct the integer value to
within the allowed range.

26

Constant 1" is wrong.
(C8019)
(Constant enters *1.)

The Boolean constant is illegal.

Example 1: D1 := 2##0011_0101;
The wrong Boolean constant is
described.

Example 2: MO :=2 #F;
The wrong Boolean constant is
described.

Change the description of
the Boolean constant into
the usable one.

27

It is used except the INT
type for the element
number of an array
variable. (C8021)

Other than the word type is used for element

specification.

Example 1: Bit type array: BoolAry1
Real number type label: RealVal
BoolAry1[RealVal] := x0;

Example 2: Bit type array: BoolAry1
BoolAry1[D0<D1]
The wrong element specification is
described.

Change the data type of
the element into the word

type.

28

Array subscript is out of
bounds. (C8022)

The specified element number exceeds the element
range of the array definition.
Example 1: Word type array label (number of
elements 2): Kosu
Unit_No[5] := DO;

Change the element
number to the one within
the element range of the
array definition.

29

The variable which is non-
array variable is used as
array. (C8023)

The array format syntax was described in the
variable that is not an array variable.
Example 1: Word type label: W_TMP1
W_TMP1[2] := 100;
Described in the array format in the
variable that is not an array.
Example 2: aaa[1] := DO;
The undefined label is described in the
array format.

Correct the description of
the variable.

7 ERRORLIST

No. Error Message Cause Corrective Action
The element name of the structure is wrong or the
variable name of the FB is wrong.
Example 1: Structure element name: mem1
. Diverted structure name: InsSDT1
Member "*1' of *2' is
i InsSDT1.mem2 := 100;
undefined. (C8024) . Correct the element name
The wrong structure element name is
(Structure element name or . of the structure, or correct
30) described. .
FB variable name enters . the variable name of the
Example 2: Input variable: IN1
*1, and structure name or) FB.
Diverted FB name: FB1
FB name enters *2.)
FB1(IN1 := 10);
dO := FB1.aaa;
An undefined FB output variable is
described.
The FB variable that cannot be used as FB output
Member *1' of *2' which was used.
cannot be used as a FB Example 1: Internal variable (word type): TEMP1 Use the correct FB variable
31 | output is used. (C8025) Diverted FB name: FB1 and describe it as FB
(FB variable name enters D100 := FB1.TEMP1; output.
*1, and FB name enters *2.) The internal variable is used as FB
output.
The FB variable using method is wrong.
Variable 1" (FB: *2) Example 1: [FB definition]
cannot be used other than Input variable: IN1 .
. Use the correct FB variable
32 | an argument. (C8026) Output variable: OUT1 .
) . in the argument of the FB.
(FB variable name enters Diverted FB name: FB1
*1, and FB name enters *2.) X1 :=FB1.IN1;
The input variable is used as FB output.
The structure name is illegal.
) i Example 1: Structure: None
It is a undefined structure.
33 (C8027) Word type label: W_TMP2 Correct the structure name.
W_TMP2.mem1 := 100;
The wrong structure is described.

7 ERRORLIST

No. Error Message Cause Corrective Action
The variable to which a constant, input variable or
other value cannot be assigned is specified in the
location where the value is assigned.
The variable which cannot | Example 1: Label (constant type): cnt
substitute a value for the *1 cnt ;= D10;
cannot be specified. Assigned to the label constant. Change the value into the
34 | *2'(C8028) Example 2: ABS_E(TRUE, d0, K10); variable to which a value
(Error location enters *1, The constant is described in the output can be assigned.
and function name, ":=" variable of the function.
enters *2.) Example 3: FB input variable (word type): IN1
BPLUS_3_M(MO, K1, DO, FB1.IN1);
The input variable is specified in the
argument where the value is output.
Type mismatch at variable) .
“1 of "2, (C8029) The type of the variable does not match. Corr?(-:t the type in the
) Example 1: Word type array: IntAry1[0..1] specified error location of
35 | (Argument error location)
. M1 := BACOS_MD(TRUE, the function argument, or
enters *1, and function)
IntAry1, D1); correct the variable type.
name enters *2.)
The left member of the variable/device differs in data
type from the right member.
Example 1: DO : =TRUE;
Type mismatch for *1'. The bit type is assigned to the word Specify the same data type
36 (C8030) device. in the left and right
(Operator, such as ":=" or Example 2: D1 := D2*M1; members of the
"" enters *1.) The word type and bit type are operated. | variable/device.
Example 3: MO :=d1 > M1;
The word type and bit type are
compared.
The number of arguments for a function call does not
match the definition.
No overload of *1' takes *2 | Example 1: ABS();
parameters. (C8031) The number of arguments described is
37 (Function name enters *1, less than the number of arguments Correct the number of
and the number of defined. function arguments.
arguments that do not match | Example 2: dO := ABS(10, 10);
the definition enters *2.) The number of arguments described is
greater than the number of arguments
defined.
7-9 7-9

7 ERRORLIST

No. Error Message

Cause

Corrective Action

The type of a formula is
illegal. (C8032)

38

The format type does not match in the control syntax.
Example 1: Double word type: DwLBL
FOR DwLBL :=W1 TO W2 BY W3 DO
W5 = WE6;
END_FOR;
The data types of the repeat variable and
last value expression/incremental
expression do not match.
Example 2: CASE W1 OF
1: DO = 1;
2147483648 : DO := 2;
ELSE
DO :=10;
END_CASE;
The data types of the integer expression
and selection value do not match.
Example 3: IF W1 THEN
D100 :=1;
END_IF;
The word type is specified for the
Boolean expression.

Correct the format type.

Substitution is impossible
for a constant variable
(inside of FOR syntax).
(C8033)

39

An attempt was made to write to the constant
variable.
There is the following program example for the above
error.
Example 1: Constant label : tei

FOR tei := W10 TO W20 BY W30 DO

R10 := R20;
END_FOR,;

Write to the constant
variable (in FOR syntax)
cannot be performed.

By FOR syntax, variables
40 | other than INT/DINT type
are used. (C8034)

The variable of other than the word/double word type
is used in the FOR syntax.
(For example, when the character string, array or
structure variable name is specified for the repeat
variable)
Example 1: Character string label: Str1, Str2, Str3,

Str4

FOR Str1 := Str2 TO Str3

BY Str4 DO

DO := D100;

END_FOR;

The character string variable name was

specified for the repeat variable.

Use the correct type in the
FOR syntax.

7 ERRORLIST

No. Error Message Cause Corrective Action
"DQO" is not described in the FOR syntax. Describe "DO" in the FOR
Example 1: FOR D1 := D2 TO D3 BY D4 syntax.
The k d"™1'i Describe "UNTIL" in the
16 Keyworc T 18 "UNTIL" is not described in the REPEAT syntax.
missing. (C8039) REPEAT syntax.
(DO "OF" is not described in the CASE conditional Describe "OF" in the CASE
UNTIL statement. conditional statement.
41 | OF "THEN" is not described in the IF conditional Describe "THEN" in the IF
THEN statement. conditional statement.
or Describe "THEN" in the
"THEN" is not described in the ELSIF conditional B
DO ELSIF conditional
. statement.
enters *1.) statement.
) .) Describe "DO" in the
"DQO" is not described in the WHILE syntax.
WHILE syntax.
The description of the input, output or I/O variable of
the called FB is illegal.
llegal parameter for call of | Example 1: Diverted FB name: FB1 o
Correct the call description
42 | *1.(C8040) FB1(X10);
. of the FB.
(FB name enters *1.) Example 2: Input variable: IN1
Diverted FB name: FB1
FB1(FB1.IN1);
The return value or the variable that will store the
The variable which stores return value does not exist in the function that has no
43 the return value of a EN/ENO. Describe the return value of
function is not specified. There is the following example where the variable the function.
(C8041) that will store the return value.
Example 1: INT_TO_DINT(DO);

7 ERRORLIST

No. Error Message Cause Corrective Action
There are too many nesting levels or conditions in
the control syntax, or the program of the control
syntax is too long.
Example 1: IF DO = 0 THEN
IF D1=0THEN
END_IF;
END_IF;
Nesting was performed to 598 or more
levels in the IF statement.
Example 2: FOR DO :=0 TO 100 BY 1 DO
FORD1:=0TO 100 BY 1 DO
- The program of the control
There are many nesting END_FOR; P .g
- END FOR: syntax is too long. Shorten
and the conditions of - ’
Nesting was performed to 299 or more the control syntax program,
44 | control syntax, or between .
trol tax is too | levels in the FOR statement. e.g. reduce the number of
control syntax is too long.
(09017)y g Example 3: WHILE DO < 10 DO nesting level or reduce the
WHILE D1 <10 DO number of conditions.
END_WHILE;
END_WHILE;
The WHILE statement was nested to 598
or more levels.
Example 4: CASE WO OF
0: DO :=0;
1: D0 :=1;
1491: DO := 1491;
END_CASE;
1492 or more integer selection values
were used in the CASE statement.
In a specific function, TRUE must always be entered
The value of the execution | into execution condition EN but FALSE has been
45 conditions EN of function entered. Specify the correct value in
"1"is not right. (C9019) Example 1: EI_M(FALSE); execution condition EN.
(Function name enters *1.) | Example 2: DI_M(0);
Example 3: COM_M (FALSE);
Failed to read a system file. o .
46 The system file is corrupted. Reinstall.
(C9020)
Since it is used by the Z0 or Z1 is used. .
Make correction so that Z0
47 | system, Z0 and Z1 cannot Example 1: INC_M(M10, D0Z1);)
or Z1 is not used.
be used. (C9035) Example 2: Z0 := 10;
Constant %d is outside the
range of an element .
The element number of the array is illegal. .
number (%d .. %d). Correct the specified
Example 1: Word type array label: .
48 | (C9039) constant to within the
IntAry1[255]
(Element number enters *1, element number range.
IntAry1[K255] := 0;
and the numbers of
elements enter *2 and *3.)
7-12 7-12

7 ERRORLIST

No. Error Message Cause Corrective Action
Oi d as the divisor.
. S use a.s e_msor Correct the portion where 0
49 | Division by zero. (C9065) Example 1: DO := 10/0; ' s
Example 2: D1 := W1/KO; is used as the divisor.
. . Change the character
The return value of function When operation could not be performed by directly string function that resulted
. referring to the return value of the character string in error into the other
"1' cannot carry out direct o
50 function (indicates the ***_STR(), LEFT(), RIGHT() program, and correct the
reference. (C9066) function) program to use the return
(Function name enters *1.) ') - . o value of that character
Example 1: MO := INT_TO_STR(DO0) < "AAA"; string function.
Failed to read a system file. o The system file is
51 (C9072) The system file is corrupted. corrupted.

Reinstall.

The error occurred at the The conversion result has an error. In the argument of the

conversion of function "1". Example 1: TIMER_H_M(XO0, TCO, -1); function, use the specifiable
52 (C9076) A negative value is used in the third data type or the data within

(Function name enters *1.) argument. the specifiable range.

* When the operation
expression or function
was specified

An operation expression or function was specified in An operation expression
the input variable that specifies the head device of or function cannot be
the MELSEC function. specified in the input
.) variable that specifies the
The bit type array element whose element number is head device.
variable was specified in the specified input variable Specify a label name or
of the MELSEC function. device.
The array element of other than bit type whose * When the bit type array
element whose element
element number is variable was specified in the number is variable was
specified input variable of the MELSEC function. specified
Example 1: BMOV_M(X0, MAX (DO, D1, D2), The bit type array element
D100.D200): whose element number is
’) variable cannot be
The function was used in the input specified in the argument
variable. that specifies the head of
_ Example 2: TO_M(X0, D0+1, D1, D2, D3); the device.
53 The formula is used for the The operation expression was used in Char;)ge .thte elementt t
input variable. (C9118 : . number Into a constant, or
P () the input variable. specify the label name or
Example 3: DTO_M(XO0, Dint1+K8X0, D1, D2, D3); bit device.
The operation expression was used in * When the array element
the input variable. other than bit type whose
Example 4: BKRST_M(X0, ARY[DO], D1); element number is
i variable was specified
The bit type array element whose If the array element
element number is variable was whose element number is
specified in the input variable S1 that variable is specified, there
specifies the head device. is a limit on the index
Example 5: BKPLUS_M(MO, ARY[D1], ARY[D2], Liffgﬁsr’ used in the
ARY[D3], ARY[D4]); Therefore, make
The array elements whose element correction, e.g. change
number is variable were specified in the the element number into a
input variables S1, S2 that specify the constant, specify the label
head device name or bit device, or
’ reduce the number of
specified array elements
used in a single function.
7-13 7-13

7 ERRORLIST

No. Error Message Cause Corrective Action
An error is in a conversion . . Check the contents of the
The program is correct in ST grammar but an error L)
result. (F0028)"*1" i o list displayed in the error
54 . . occurs due to device specifications, etc.
(llegal conversion result is message, and correct the
.) Example 1: TSO := TRUE;
displayed in *1.) program.
The number of characters used is greater than the
preset maximum value.
There is the following error example that uses
The .numberhc.»f':he characters greater than the maximum value. Change the character
maximum which can use a . i .
55 . Example 1: Character string label: Str1 string to within 32
character is to 32 Str1 :="123456789012345
characters.
characters. (F0102) 678901234567890
123"
When the number of character string
characters is 33
The illegal device or value
beyond the range is used. An illegal device or a numeric value outside the Correct the device or the
56 | (FO137) "1" range is used. numeric value to within the
(Illegal conversion resultis | Example 1: MO := COUNTER_M(TRUE, CC2, -1); range.
displayed in *1.)
Devices other than a timer | The device other than the timer is used in the Use the timer device in the
57 | are used for the argument argument of TIMER_M. argument of function
of TIMER_M. (FO177) Example 1: TIMER_M(X0, CCO, 2); TIMER_M.
Devices other than a)) . o
The device other than the counter is used in the Use the counter device in
counter are used for the .
58 argument of COUNTER_M. the argument of function
argument of
Example 1: COUNTER_M(XO0, TCO, 2); COUNTER_M.
COUNTER_M. (FO178)

7 ERRORLIST

No.

Error Message

Cause

Corrective Action

59

With the CONCAT(_E)
function, the argument and
the same variable as a
return value are used.
(FO196)

The same variable is used in the argument and

return value of the CONCAT(_E) function.

Example 1: Character string label: Str1 « Str2
Str1 := CONCAT(Str2, Str1);

Use different variables in
the argument and return
value of the CONCAT(_E)
function.

60

With the INSERT(_E)
function, the argument and
the same variable as a
return value are used.
(FO206)

The same variable is used in the argument and
return value of the INSERT(_E) function.
Example 1: Character string label: Str1

Str1 := INSERT (Str1, Str2,

DO);

The same variable is used in the

argument and return value.

Use different variables in
the argument and return
value of the INSERT(_E)
function.

An illegal device type is

The illegal device type (timer, retentive timer,
counter, pointer) is used.

The illegal device type
(timer, retentive timer,

61) counter, pointer) cannot be
used. (C10000) Example 1: Timer1 := 0; .
. . used. Change it into the
The device type timer was used. i .
applicable device type.
The device is greater than the applied range, the
unusable device is specified, or the numeric value is
greater than the applied range. Correct the device number
. = . to within the applied range.
The device and numerical Example 1: M0 := X2000; . PP 9
: , The device number greater than 1FFF Alternatively, change the
value which were specified -) .
62 . was specified as the device number of X. | device into the usable one,
can be over it, or cannot E e 2: DO = A0 t th .
: = AO0; or correct the numeric
use the range. (C10001) xample , o .
The accumulator was used with the value to within the applied
QCPU/LCPU range.
Example 3: Double word type label: DW1
DW1 := K2147483648;
7-15 7-15

7 ERRORLIST

(C10002)

Example 2: dO := ABS(ABS(ABS(ABS(wlabel)
R

1025 or more functions ABS were used
in a single statement.

No. Error Message Cause Corrective Action
A total of 1025 or more functions or operators are
used in a single statement. When functions or
Example 1: DO := 1+1+1+1+ « o « +1+1; operators are used in a
There is too much function 1025 or more operators "+" were used in | .
single statement, make
63 | or number of a operator. a single statement.

correction to use less than
1025 functions or
operators.

There is too much nesting

When nesting was performed to 17 or more levels in
the array element specification.
Example 1: Array1[Array1[Array1[Array1

Correct the nesting of the
array element specification
to up to five levels. Six or

already used. (C10004)

1/0 variable name: INOUT1
FB1(INOUT1 := D100);
FB1(INOUT1 := D101);

64 | of array element
specification. (C10003) [Array1[Array1[................. 1MI; | more levels are not
Nesting was performed to 17 or more supported. 17 or more
levels in the array element specification. levels will result in an error.
An FB call is made two or more times under the
same FB name in the program.
65 Specified FB name is Example 1: Diverted FB name: FB1 Make an FB call under the

same FB name only once.

66

An output variable is used
before the call of FB.
(C10005)

FB output is provided before an FB call.
Example 1: Diverted FB name: FB1
1/O variable name: INOUT1
Output variable: OUT1
DO := FB1.0UT{;
FB1(INOUT1 := D100);

Put the FB output after the
FB call.

67

The illegal type is used by
"1'. (C10006)
(Operator enters *1.)

The value greater than the data type range was used

in the double word or real number type assignment

statement or operation.

Example 1: Double word type label: w_Dword
w_Dword :=-2147483649;

Specify the correct range.

7 ERRORLIST

No.

Error Message

Cause

Corrective Action

The illegal type is used at
68 | the function "*1'. (C10007)
(Function name enters *1.)

The illegal data type was used for the argument of

the MELSEC function.

Example 1: RST_M(MO, ddev1);

The double word type was specified in
the second argument of function RST_M.

Example 2: DECO_M(MO, Real1, K8, Real2);

The real number type was specified in
the second/fourth argument of function
DECO_M.

Example 3: COMRD_S_MD(MO, ddev1, Str32);
The double word type was specified in
the second argument of function
COMRD_SD_MD.

Use the variable of correct
data type in the argument.

App

APPENDICES

APPENDICES

Appendix 1 Character Strings that cannot be Used as Labels and FB Names

This section indicates the character strings that cannot be used as label and FB names
during ST programming.

The character strings used in the device names, instruction names or function names
cannot be used as labels and FB names.

If any of the character strings indicated in the following table is used, an error will occur
at the execution of entry or compile.

Character strings that cannot be used as labels and FB names

A, ACALL, ACJ, ACTION, ANB, ANY, ANY_BIT, ANY_DATE, ANY_DERIVED,
ANY_ELEMENTARY, ANY_INT, ANY_MAGNITUDE, ANY_NUM, ANY_REAL, ANY_SIMPLE,
ANY_STRING, ARRAY, AT

B, BEND, BL, BLOCK, BOOL, BOOL_TO_BYTE (DINT, DWORD, INT, REAL, SINT, UDINT, UINT, USINT,
WORD),

BY, BYTE, BYTE_TO_BOOL (DINT, DWORD, INT, REAL, SINT, STRING, UDINT, UINT, USINT, WORD),
BWORKR, BWORKRP, BWORKW, BWORKWP, B_BCD_TO_DINT (INT, SINT)

C, CASE, CAL, CALC, CALCN, CONFIGURATION, CONSTANT, CTD, CTU, CTUD

D, DATE, DATE_AND_TIME, DINT, DINT_TO_BCD (BOOL, BYTE, DWORD, INT, REAL, SINT, STRING,
TIME, UDINT, UINT, USINT, WORD), DO, DT, DWORD, DWORD_TO_BOOL (BYTE, DINT, INT, REAL,
SINT, STRING, UDINT, UINT, USINT, WORD), DX, DY, D_BCD_TO_DINT (INT, SINT)

E, ELSE, ELSIF, EN, END, END_ACTION, END_CASE, END_FOR, END_FUNCTION, END_PROGRAM,
END_IF, END_REPEAT, END_RESOURCE, END_STEP, END_STRUCT, END_TRANSITION,
END_TYPE, END_VAR, END_WHILE, ENQ, EQ, EQ_STRING,EXIT

F, FALSE, FD, FOR, FROM, FUNCTION, FUNCTION_BLOCK, FX, FY, F_EDGE, F_TRIG

G, GE, GE_STRING, GT, GT_STRING

H

I, IF, INITIAL_STEP, INT, INT_TO_BOOL (BYTE, DINT, DWORD, REAL, SINT, STRING, UDINT, UINT,
USINT, WORD)

J, JMPC, JMPCN

K

L, LDN, LE, LE_STRING, LIMIT_STRING, LINT, LREAL, LT, LT_STRING, LWORD

M, MAX_STRING, MIN_STRING, MOD, MPP, MPS, MRD

N, NE, NE_STRING, NOP, NOT

OF, ON, ORB, ORN

P, PROGRAM

O|lT|Oo|lZ|Z2|r | x|«

Q

Pyl

R, R1, RCALL, RCJ, READ, READ_ONLY, READ_WRITE, REAL, REAL_TO_BOOL (BYTE, DINT,
DWORD, INT, SINT, STRING, UDINT, UINT, USINT, WORD), RECV, REPEAT, RESOURCE, RETAIN,
RETC, RETCN, RETURN, REQ, RS, R_EDGE, R_TRIG

S, SB, SD, SEND, SEL_STRING, SFCP, SFCPEND, SG, SINT, SINT_TO_BOOL (BYTE, DINT, DWORD,
INT, REAL, STRING, UDINT, UINT, USINT, WORD), SM, SR, SREAD, ST, STEP, STEPC, STEPD, STEPG,
STEPI, STEPID, STEPIR, S TEPISC, STEPISE, STEPIST, STEPN, STEPR, STEPSC, STEPSE, STEPST,
STN, STRING, STRING_TO_BYTE (DINT, DWORD, INT, REAL, SINT, TIME, UDINT, UINT, USINT,
WORD), STRUCT, SW, SWRITE, SZ

App - 1

App -1

APPENDICES

Character strings that cannot be used as labels and FB names

T, TASK, THEN, TIME, TIME_OF_DAY, TIME_TO_STRING, TO, TOD, TOF, TON, TP, TR, TRAN, TRANA,
TRANC, TRANCA, TRANCO, TRANCOC, TRANCOCJ, TRUNC_DINT (INT, SINT), TRANJ, TRANL,
TRANO, TRANOA, TRANOC, TRANOCA, TRANOCJ, TRANOJ, TRANSITION, TRUE, TYPE

U, UDINT, UDINT_TO_BOOL (BYTE, DINT, DWORD, INT, REAL, SINT, STRING, UINT, UNTIL, USINT,
WORD), UINT, UINT_TO_BOOL (BYTE, DINT, DWORD, INT, REAL, SINT, STRING, UDINT, USINT,
WORD), ULINT, UNTIL, USINT, USINT_TO_BOOL (BYTE, DINT, DWORD, INT, REAL, SINT, STRING,
UDINT, UINT, WORD)

V, VAR, VAR_CONSTANT, VAR_EXT, VAR_EXTERNAL, VAR_EXTERNAL_FB, VAR_EXTERNAL_PG,
VAR_GLOBAL, VAR_GLOBAL_FB, VAR_GLOBAL_PG, VAR_IN_OUT, VAR_INPUT, VAR_OUTPUT,
VAR_TEMP, VD, VOID

W, WHILE, WITH, WORD, WORD_TO_BOOL (BYTE, DINT, DWORD, INT, REAL, SINT, STRING, UDINT,
UINT, USINT), WORKR, WORKRP, WORKW, WORKWP, WRITE, WSTRING, W_BCD_TO_DINT (INT,
SINT)

X, XOR, XORN

Y

Z, ZNRF, ZR

App -2

Precaution on label name
1. A space cannot be used.
2. A numeral cannot be used as the first character.
3. The following characters cannot be used.
G) 5L+ - <,>=&,
LW#8 %, ~ N @ LLOh s, w2\
An error occurs if an underscore exists at the end of a character string or two or
more underscores are used consecutively.
4. Device names cannot be used.
An error occurs if any of 0 to F is appended after a device name.
Examples: XFFF, M100
5. Do not use "EnDm" as a label name (Example: E001D9).
(n and m are any values.)
It may be recognized as a real number value and unavailable as a label name.
6. Instruction names (sequence instructions, basic instructions, application instructions)
and function names (MELSEC functions, IEC functions) cannot be used.

App -2

App

APPENDICES

Appendix 2 ST instruction table for GX Developer and GX Works2

App -3

Instructions that can be used in ST programs of GX Developer may not be able to be
used in GX Works2. As a result, an error may occur when a project that includes an ST
program and is saved in GX Works2 format is read and compiled with GX Developer.
In such case, correct the ST program in accordance with the following table.

GX Works2 | GX Developer GX Works2 | GX Developer GX Works2 | GX Developer
BACOS BACOS_MD DEC DEC_M ESTR ESTR_M
BAND BAND_MD DECO DECO_M EVAL EVAL_M
BASIN BASIN_MD DELTA DELTA_M FLT FLT_M
BATAN BATAN_MD DFLT DFLT_M FMOV FMOV_M
BCD BCD_M DFRO DFRO_M FROM FROM_M
BCOS BCOS_MD DGRY DGRY_M GBIN GBIN_M
BDSQR BDSQR_MD DI DI_M GRY GRY_M
BIN BIN_M DINC DINC_M HOUR HOUR_M
BKAND BKAND_M DIS DIS_ M INC INC_M
BKBCD BKBCD_M DLIMIT DLIMIT_MD MIDR MIDR_M
BKBIN BKBIN_M DMAX DMAX_M NDIS NDIS_M
BKOR BKOR_M DMIN DMIN_M NEG NEG_M
BKRST BKRST_M DNEG DNEG_M NUNI NUNI_M
BKXNR BKXNR_M DOR DOR_M ouT OUT_M
BKXOR BKXOR_M DRCL DRCL_M PLOW PLOW_M
BMOV BMOV_M DRCR DRCR_M POFF POFF_M
BRST BRST_M DROL DROL_M PSCAN PSCAN_M
BSET BSET_M DROR DROR_M PSTOP PSTOP_M
BSFL BSFL_M DSER DSER_M QCDSET QCDSET_M
BSFR BSFR_M DSFL DSFL_M QDRSET QDRSET_M
BSIN BSIN_MD DSFR DSFR_M RCL RCL_M
BSQR BSQR_MD DSORT DSORT_M RCR RCR_M
BTAN BTAN_MD DSUM DSUM_M RFS RFS_M
BTOW BTOW_MD DTEST DTEST_MD RND RND_M
BXCH BXCH_M DTO DTO_M RSET RSET_MD
CML CML_M DWSUM DWSUM_M RST RST_M
COM COM_M DXCH DXCH_M SECOND SECOND_M
DATERD DATERD_MD DXNR DXNR_M SEG SEG_M
DATEWR DATEWR_MD DXOR DXOR_M SER SER_M
DBAND DBAND_MD DZONE DZONE_MD SET SET_ M
DBCD DBCD_M El El_M SFL SFL_M
DBIN DBIN_M EMOD EMOD_M SFR SFR_M
DBL DBL_M ENCO ENCO_M SFT SFT_M
DCML DCML_M ENEG ENEG_M SORT SORT_M
DDEC DDEC_M EREXP EREXP_M SRND SRND_M

(Next page)
App -3

APPENDICES
L]

App - 4

GX Works2 | GX Developer GX Works2 | GX Developer GX Works2 | GX Developer
STOP STOP_M WAND WAND_M WXNR WXNR_M
SUM SUM_M WDT WDT_M WXOR WXOR_M
SWAP SWAP_MD WOR WOR_M XCH XCH_M
TEST TEST_MD WSUM WSUM_M ZONE ZONE_MD
UNI UNI_M WTOB WTOB_MD

App -4

INDEX

[1]

[2]

1-bit shift of device (SFT_M)......cccceviiiinnenne 5-8
1-word left shift (DSFL_M).......c.ccoovvrvennennn. 5-55
1-word right shift (DSFR_M)ccccccevvennnen. 5-55
16-bit BIN — 32-bit BIN conversion

(DBL_M) .ot 5-27
16-bit data exchange (XCH_M).................. 5-35
16-bit data NOT transfer (CML_M)............... 5-33
2' complement of 16-bit BIN (NEG_M)......... 5-30
2' complement of 32-bit BIN (DNEG_M)....... 5-30

2' complement of floating-point (ENEG_M).. 5-31

[3]

32-bit BCD — BIN conversion (DBIN_M)..... 5-24
32-bit BIN — 16-bit BIN conversion
(WORD_M)....oiiiiiiiie e 5-27

32-bit BIN — BCD conversion (DBCD_M)... 5-23
32-bit BIN — character string conversion

(DSTR_S_MD) ..ctiiiieieeieeieeie e 5-80
32-bit BIN decimal ASCII conversion
(DBINDA_S_MD) ..ccvveciieeeieeie e 5-73
32-bit BIN — decrement (DDEC_M) 5-22
32-bit BIN — floating-point conversion

(DFLT_M) oot 5-26
32-bit BIN — gray code conversion
(DGRY_M)...oiiiieiiesieceese e 5-28
32-bit BIN — hexadecimal ASCII conversion
(DBINHA_S_MD) ..cvieiieeeieeee e 5-74
32-bit BIN increment (DINC_M)..........cccc... 5-22
32-bit data bit check (DSUM_M) 5-60
32-bit data bit zone control
(DZONE_MD)....cvveiieiieciiesiiesee e 5-104
32-bit data dead band control
(DBAND_MD)....ccueeiiieiieiienieenee e 5-102
32-bit data exchange (DXCH_M) 5-35
32-bit data exclusive OR (2 devices)

(DXOR_M) ..ttt 5-45
32-bit data exclusive OR (3 devices)
(DXOR_3 M)ttt 5-45
32-bit data exclusive OR (3 devices)
(DXOR_3 M)ttt 5-45
32-bit data left rotation

(carry flag not included) (DROL_M).............. 5-52
Index - 1

32-bit data logical product (2 devices)

(DAND_M)....oiiiiiiecirciece e 5-40
32-bit data logical product (3 devices)
(DAND_3_M) .ot 5-40
32-bit data logical sum (2 devices)

(DOR_M) ..ottt 5-42
32-bit data logical sum (3 devices)

(DOR_3_M) .t 5-43
32-bit data maximum value retrieval

(DMAX M) .ottt 5-66
32-bit data minimum value retrieval
(DMIN_M)..ceiiiiiiiiee e 5-67
32-bit data NOT exclusive OR (2 devices)
(DXNR_M)..oeiiiiiiececece e 5-47
32-bit data NOT exclusive OR (3 devices)
(DXNR_3_M) .ot 5-48
32-bit data NOT transfer (DCML_M)............. 5-33
32-bit data right rotation

(carry flag included) (DRCR_M).......cccceueeee. 5-51
32-bit data right rotation

(carry flag not included) (DROR_M).............. 5-51
32-bit data search (DSER_M)ccccceeneee. 5-59
32-bit data sort (DSORT_M)cccccevvrieennen. 5-68
32-bit data upper/lower limit control
(DLIMIT_MD) c.veeiteesieeseeseeseesiee e 5-100
32-bit floating-point — BIN conversion
(DINT_E_MD) oottt 5-25
32-bit gray code — BIN conversion

(DGBIN_M) ..o 5-29

32-bit total value calculation (DWSUM_M)...5-69

[4]
4-bit connection of 16-bit data (UNI_M)........ 5-63
4-bit disconnection of 16-bit data (DIS_M) ...5-62

[7]
7-segment decode (SEG_M)cccoeeieenenne 5-62
[A]
ABS(_E) (Absolute value).........ccccocoeveienennenn. 6-21
Absolute value (ABS(_E))......ccceoevvrvieeinenne 6-21
ACOS_E_MD
(Floating-point COS-1 operation)................... 5-90
ACOS(_E)
(Floating-point COS-1 operation)................... 6-29

Index - 1

Acquisition from end of character string

(RIGHT(_E)) oo eveeveeieeieeeee e 6-71
Acquisition from specified position of

character string (MID(_E))coooeeveeneiieeniee 6-72
Acquisition from start position of

character string (LEFT(_E)) ..cccocovevviiiennene 6-70
ADD_E (Addition)ceoeereirieeerere e 6-31
Addition (ADD_E)......cceovviiiiiiiieeneeeee, 6-31
Addition of BCD 4-digit data (2 devices)
(BPLUS_M) .t 5-13
Addition of BCD 4-digit data (3 devices)
(BPLUS_3 M) .t 5-13
Addition of BCD 8-digit data (2 devices)
(DBPLUS_M)....ooiiiiieiieeesieeeee e 5-15
Addition of BCD 8-digit data (3 devices)
(DBPLUS_3_ M)t 5-15
Addition of clock data (DATEPLUS_M)...... 5-109
AND_E (Logical product)ccceceereerueennen. 6-43
Any data fetch in character string

(MIDR_M) ..ttt 5-85
Any data replacement in character string
(MIDW_M) ..ot 5-85
ANY L 3-4
ARRAY .o 3-3

ASC_S_MD (BIN — ASCII conversion) 5-83
ASCIl — BIN conversion (HEX_S MD)....... 5-83
ASIN_E_MD

[B]

(Floating-point SIN-1 operation) 5-89
ASIN(_E)

(Floating-point SIN-1 operation) 6-28
Assignment (MOVE(_E))cccoovvviivninnnen. 6-38
ATAN_E_MD

(Floating-point TAN-1 operation)................... 5-90
ATAN(_E)

(Floating-point TAN-1 operation) 6-30
BACOS_MD (BCD type COS-1 operation).. 5-97
BAND_MD (Dead band control).................. 5-101

BASIN_MD (BCD type SIN-1 operation)...... 5-97
BATAN_MD (BCD type TAN-1 operation) ... 5-98
BCD 4-digit — decimal ASCII conversion

(BCDDA_S_MD) ..ot 5-75
BCD 4-digit square root (BSQR_MD)........... 5-94
BCD 8-digit — decimal ASCII conversion

(DBCDDA_S_MD)....cciiieireieeeenieeeeeeeeeene 5-75
BCD 8-digit square root (BDSQR_MD)........ 5-95
BCD — BIN conversion (BIN_M)................. 5-24

Index - 2

BCD format data — floating-point

(EREXP_M)...coiiiiiiiiieienese e 5-87
BCD type COS operation (BCOS_MD) 5-96
BCD type COS-1 operation (BACOS_MD)...5-97
BCD type SIN operation (BSIN_MD)............ 5-95
BCD type SIN-1 operation (BASIN_MD) 5-97
BCD type TAN operation (BTAN_MD).......... 5-96
BCD type TAN-1 operation (BATAN_MD)....5-98

BCD_M (BIN — BCD conversion)................. 5-23
BCDDA_S_MD (BCD 4-digit — decimal ASCII
(oo 1Y =Y £110] o) PSR 5-75

BCOS_MD (BCD type COS operation) 5-96
BDIVID_M (Division of BCD 4-digit data)5-17
BDSQR_MD (BCD 8-digit square root) 5-95
BIN — ASCII conversion (ASC_S_MD)........ 5-83

BIN — BCD conversion (BCD_M)................. 5-23
BIN block addition (BKPLUS_M)................... 5-20
BIN block subtraction (BKMINUS_M)........... 5-20
BIN — character string conversion

(STR_S_MD) .ottt 5-80
BIN — decimal ASCII conversion
(BINDA_S_MD)..iieeeeeceeeee e 5-73

BIN — floating-point conversion (FLT_M).....5-26
BIN — gray code conversion (GRY_M)........ 5-28
BIN — hexadecimal ASCII conversion

(BINHA_S_MD)..c.ooitiiieiiiieeeenere e 5-74
BIN_M (BCD — BIN conversion) 5-24
Binary selection (SEL(_E))cccccvoevrivnnnnnen. 6-47
BINDA_S_MD

(BIN — decimal ASCII conversion)................ 5-73
BINHA_S_MD

(BIN — hexadecimal ASCII conversion)....... 5-74
Bit check (SUM_M)......cccoiiiiiiiienrieeeeee, 5-60
Bit connection of any data (NUNI_M) 5-64
Bit device batch reset (BKRST_M)............... 5-58
Bit disconnection of any data (NDIS_M)....... 5-63
Bit left shift (SHL(_E)) ...cceoereieeerereeeee, 6-39
Bit specificationccccoevcieiiieeiie e 3-16
Bit reset of word device (BRST_M)............... 5-56
Bit right shift (SHR(_E)) -..eeoveeeirieeeieee, 6-40
Bit set of word device (BSET_M).................. 5-56
Bit test of 32-bit data (DTEST_MD) 5-57
Bit test of word device (TEST_MD)............... 5-57
Bit zone control (ZONE_MD).........cccccuu... 5-103

BKAND_M (Block data logical product)........ 5-41
BKBCD_M (Block BIN — BCD conversion)..5-31
BKBIN_M (Block BCD — BIN conversion) ...5-32

Index - 2

BKCMP_EQ_M

(Block data comparison (=)).....cccccceevveevneens 5-10
BKCMP_GT_M

(Block data comparison (>)......ccccceeeeveernenne 5-11
BKCMP_LE_M

(Block data comparison (<=))cccceevernene 5-11
BKCMP_LT_M

(Block data comparison (<))......ccccceevveerneens 5-12
BKCMP_NE_M

(Block data comparison (<>))ccceeveeeene 5-10
BKMINUS_M (BIN block subtraction)........... 5-20
BKOR_M (Block data logical sum)............... 5-43
BKPLUS_M (BIN block addition).................. 5-20
BKRST_M (Bit device batch reset)............... 5-58
BKXNR_M

(Block data NOT exclusive OR).................... 5-48
BKXOR_M (Block data exclusive)................ 5-46
Block BCD — BIN conversion

(BKBIN_M) ..o 5-32
Block BIN — BCD conversion
(BKBCD_M)....tieiieeeieee e 5-31
Block data comparison (=)
(BKCMP_EQ_M)..cooiiiiiiieiieieeneee e 5-10
Block data comparison (<)

(BKCMP_LT M) .oiiiieiieieceeceee e 5-12
Block data comparison (<=)
(BKCMP_LE_M)...ocoieiieiieci e 5-11
Block data comparison (<>)

(BKCMP_NE_M) ...ccoiiiiieiieeeeeie e 5-10
Block data comparison (>)

(BKCMP_GT_M) ..oociiiieeeiee e 5-11
Block data comparison (>=)
(BKCMP_GE_M)...cccoeiieieiecr e 5-12
Block data exchange (BXCH_M).................. 5-36
Block data exclusive (BKXOR_M)................ 5-46
Block data logical product (BKAND_M)........ 5-41
Block data logical sum (BKOR_M)............... 5-43
Block data NOT exclusive OR
(BKXNR_M)..cotiiiiieiiecieeceese e 5-48
Block transfer (BMOV_M)........cccoiiiiinnnnne 5-34
BMINUS_3 M (Subtraction of

BCD 4-digit data (3 devices)).........cccecuvrnene 5-14
BMINUS_M (Subtraction of

BCD 4-digit data (2 devices))..........ccceeuvennee. 5-14
BMOV_M (Block transfer)........ccccocoeeieenenne. 5-34
BMULTI_M

(Multiplication of BCD 4-digit data)............... 5-17
Index - 3

BOOL_TO_DINT(_E) (Boolean type (BOOL)
double precision integer type

(DINT) CONVEISION) ..ot 6-3
BOOL_TO_INT(_E) (Boolean type
(BOOL) integer type (INT) conversion).......... 6-4

BOOL_TO_STR(_E) (Boolean type
(BOOL) character string type

Boolean type (BOOL) character

string type (STRING) conversion
(BOOL_TO_STR(_E)) +eeveviveeeeninisieseenennens 6-5
Boolean type (BOOL) double precision

integer type (DINT) conversion

(BOOL_TO_DINT(_E)) .ceeervereererienieneereneens 6-3
Boolean type (BOOL) integer type (INT)
conversion (BOOL_TO_INT(_E))....cc.cccserneen. 6-4
BPLUS_3_M (Addition of

BCD 4-digit data (3 devices))cccvvvrueennen. 5-13
BPLUS_M (Addition of

BCD 4-digit data (2 devices))cccceevrennenn. 5-13
BRST_M (Bit reset of word device)............... 5-56
BSET_M (Bit set of word device) 5-56
BSFL_M (n-bit data 1-bit left shift)................. 5-54
BSFR_M (n-bit data 1-bit right shift).............. 5-54
BSIN_MD (BCD type SIN operation)............. 5-95
BSQR_MD (BCD 4-digit square root) 5-94

BTAN_MD (BCD type TAN operation).......... 5-96
BTOW_MD (Byte unit data connection)........ 5-65
BXCH_M (Block data exchange) 5-36
Byte unit data connection (BTOW_MD)........ 5-65
Byte unit data disconnection (WTOB_MD)...5-64

[C]
Call of function block..........c.ccccoeiiiiiiiiiene 4-29
CASE conditional statement............c..cccc....... 4-12
Character string — 32-bit BIN conversion
(DVAL_S _MD) ..oeeiiieiieciecie e 5-81
Character string — BIN conversion
(VAL_S MD) ..ot 5-81
Character string — floating-point conversion
(EVAL_M) .t 5-82
Character string data connection
(2 devices) (STRING_PLUS M)......ccccece.... 5-19
Character string data connection
(3 devices) (STRING_PLUS_3 M).............. 5-19
Character string length acquisition
(LEN(_E)) eeieeieeeeeie e 6-69

Index - 3

Character string length detection

(LEN_S_MD) ..ottt 5-79
Character string search (INSTR_M)............. 5-86
Character string type (STRING)

Boolean type (BOOL) conversion
(STR_TO_BOOL(_E))..c e eeeeeeerieie e 6-17
Character string type (STRING)

double precision integer type

(DINT) conversion

(STR_TO_DINT(_E)) -eeeeereereeeeerernie e 6-18
Character string type (STRING)

integer type (INT) conversion
(STR_TO_INT(_E)) seeeeerreeeieeee e 6-19
Character string type (STRING)

real number type (REAL) conversion
(STR_TO_REAL(_E)) seeeeeeeeeeree e 6-20
Clock data format conversion

(hour, minute, second — second)
(SECOND_M)..eiiiiieeeesie e 5-111
Clock data format conversion

(second — hour, minute, second)

[D]

(HOUR_M)...ooiiiiieiecieceseee e 5-111
CML_M (16-bit data NOT transfer)............... 5-33
COM_M (Refresh).......cccoceevienieneiniciceien 5-70
Comment ..o 4-32
COMRD_S_MD

(Device comment data read)ccceeueee 5-79
CONCAT(_E)

(Concatenation of character strings) 6-73
Concatenation of character strings
(CONCAT(E)) cieiieieeiieseeseece e 6-73
Conversion of direct output into pulse
(DELTA M)..ooiiiiiiece et 5-7
COS_E_MD

(Floating-point COS operation)..................... 5-88
COS(_E) (Floating-point COS operation).... 6-26
Counter (COUNTER_M).....cccooviiiiiiiiiee 5-5
COUNTER_M (Counter).......ccceevevvevreeereenne 5-5
DABCD_S_MD

(Decimal ASCIl — BCD 4-digit conversion) . 5-78
DABIN_S MD

(Decimal ASCII — BIN conversion).............. 5-76
DAND_3 M

(32-bit data logical product (3 devices)) 5-40
DAND_M

(32-bit data logical product (2 devices)) 5-40

Index - 4

Data maximum value retrieval (MAX_M)......5-65

Data minimum value retrieval (MIN_M) 5-66
Data search (SER_M)ccccoviiiiiiiiien, 5-59
Data sort S (SORT_M)cccevviiiiiiiiiiiieeen, 5-67
DATEMINUS_M

(Subtraction of clock data)...........cccceveenne 5-110
DATEPLUS_M (Addition of clock data)5-109
DATERD_MD (Read of clock data) 5-107
DATEWR_MD (Write of clock data)............ 5-108
DBAND_MD

(32-bit data dead band control) 5-102

DBCD_M (32-bit BIN — BCD conversion)....5-23
DBCDDA_S_MD

(BCD 8-digit — decimal ASCII conversion) ..5-75
DBDIVID_M (Division of BCD 8-digit data)...5-18
DBIN_M (32-bit BCD — BIN conversion)5-24
DBINDA_S_MD

(32-bit BIN — decimal ASCII conversion).....5-73
DBINHA_S_MD (32-bit BIN —

hexadecimal ASCII conversion).................... 5-74
DBL_M

(16-bit BIN — 32-bit BIN conversion)............ 5-27
DBMINUS_3_M Subtraction of

BCD 8-digit data (3 devices))ccecevrueennen. 5-16
DBMINUS_M (Subtraction of

BCD 8-digit data (2 devices))cccceuvrenenn. 5-16
DBMULTI_M Multiplication of

BCD 8-digit data.........cccocervreiieecieeeee, 5-18
DBPLUS_3 M (Addition of

BCD 8-digit data (3 devices))ccecevrueenen. 5-15
DBPLUS_M (Addition of

BCD 8-digit data (2 devices))cccccuvrenenn. 5-15
DCML_M (32-bit data NOT transfer)............. 5-33
DDABCD_S_MD

(Decimal ASCII — BCD 8-digit conversion)..5-78
DDABIN_S_MD
(Decimal ASCIl — 32-bit BIN conversion)5-76

DDEC_M (32-bit BIN decrement).................. 5-22
Dead band control (BAND_MD).................. 5-101
DEC_M (Decrement)ccovevreeneeneennennn. 5-21
Decimal ASCII — 32-bit BIN conversion
(DDABIN_S_MD).....oviieiieiireieeie e 5-76
Decimal ASCIlI — BCD 4-digit conversion
(DABCD_S_MD)..cooiiiiieieeiesieeie e 5-78
Decimal ASCIl — BCD 8-digit conversion
(DDABCD_S MD) ...cccvveeiecieeieee e 5-78
Decimal ASCII — BIN conversion
(DABIN_S MD)....ooceeiieiieeieciece e 5-76
Index - 4

DECO_M (DECOUE)vvveeeeereeeereeeereeeereen 5-61

Decode (DECO_M)....cooocevecieeieeceeeee 5-61
Decrement (DEC_M)cccocvviiiiiiiiiieee 5-21
DEG_E_MD

(Floating-point radian — angle conversion).. 5-91
DELETE(_E) (Deletion of character

string from specified position)ccc........ 6-75
Deletion of character string from

specified position (DELETE(_E)).........c.c...... 6-75
DELTA_M

(Conversion of direct output into pulse)......... 5-7
Device comment data read

(COMRD_S_MD) ..coteieeiieieeie e 5-79
DFLT_M

(32-bit BIN — floating-point conversion)....... 5-26
DFRO_M (Intelligent function module

2-word data read).......c..coceevveevieeiiie e 5-71
DGBIN_M

(32-bit gray — code BIN conversion)............ 5-29
DGRY_M

(32-bit BIN — gray code conversion)............ 5-28
DHABIN_S_MD (Hexadecimal

ASCIl — 32-bit BIN conversion) 5-77
DI_M (Interrupt disable)ccccerivrirrnnne 5-37
Digit specificationccccoriiniiiiiniiiene 3-16
DINC_M (32-bit BIN increment).................... 5-22
DINT_E_MD

(32-bit floating-point — BIN conversion)....... 5-25
DINT_TO_BOOL(_E)

(Double precision integer type

(DINT) Boolean type (BOOL) conversion) 6- 6
DINT_TO_INT(_E)

(Double precision integer type

(DINT) integer type (INT) conversion)............ 6-7
DINT_TO_REAL(_E)

(Double precision integer type (DINT)

real number type (REAL) conversion)........... 6-8
DINT_TO_STR(_E) (Double precision

integer type (DINT) character string type

(STRING) CONVEISION) ..o 6-9
DINT s 3-3
DIS_M (4-bit disconnection of 16-bit data)... 5-62
DIV_E (DiviSiON)covvviiriiriieeie e 6-34
Division (DIV_E) ...cccviiiiiieiee e 6-34

Division of BCD 4-digit data (BDIVID_M)..... 5-17
Division of BCD 8-digit data (DBDIVID_M) .. 5-18
DLIMIT_MD

(32-bit data upper/lower limit control) 5-100

Index - 5

DMAX_M

(32-bit data maximum value retrieval)........... 5-66
DMIN_M

(32-bit data minimum value retrieval)............ 5-67
DNEG_M

(2' complement of 32-bit BIN)...........cccceeueeee. 5-30
DOR_3_M

(32-bit data logical sum (3 devices)) 5-43
DOR_M

(32-bit data logical sum (2 devices))............. 5-42

Double precision integer type

(DINT) Boolean type (BOOL) conversion
(DINT_TO_BOOL(_E)) ..t ieeeeeeeieniesieeeeieine 6-6
Double precision integer type (DINT)

character string type (STRING) conversion
DINT_TO_STR(_E) .eceeeeeieieeeesee e 6-9
Double precision integer type (DINT)

integer type (INT) conversion
DINT_TO_INT(_E).ceieieeieieieeeree e 6-7
Double precision integer type (DINT)

real number type (REAL) conversion

DINT_TO_REAL(_E) ..eeeeeiieeeeeeeeeee, 6- 8
DRCL_M (32-bit data left rotation

(carry flag included))cccocviiiiiiiieee 5-52
DRCR_M (32-bit data right rotation

(carry flag included))ccocvevvevcieecee e 5-51
DROL_M (32-bit data left rotation

(carry flag not included))........cccoooeeiieriennne 5-52
DROR_M (32-bit data right rotation

(carry flag not included))........ccccooeeiieriiennne 5-51
DSER_M (32-bit data search)...........ccccee..e. 5-59
DSFL_M (1-word left shift)..........cccovvnvennnnn. 5-55
DSFR_M (1-word right shift)............ccccceece 5-55
DSORT_M (32-bit data sort)cccccereeennee. 5-68
DSTR_S_MD

(32-bit BIN — haracter string conversion).....5-80
DSUM_M (32-bit data bit check)................... 5-60
DTEST_MD (3Bit test of 32-bit data)............ 5-57
DTO_M (Intelligent function module

2-word data Write)ccooeeiiiiiiiiecee 5-72
DVAL_S_MD

(Character string — 32-bit BIN conversion)..5-81
DWSUM_M

(32-bit total value calculation)........................ 5-69
DXCH_M (32-bit data exchange).................. 5-35
DXNR_3_M (32-bit data NOT

exclusive OR (3 devices)).......ccceevvrevveeineenns 5-48

Index - 5

DXNR_M (32-bit data NOT

exclusive OR (2 devices)).......ccocevvevecreeennnnn. 5-47
DXOR_3_M

(32-bit data exclusive OR (3 devices)) 5-45
DXOR_M

(32-bit data exclusive OR (2 devices)) 5-45
DZONE_MD

[E]

[F]

(32-bit data bit zone control)....................... 5-104
El_M (Interrupt enable)c..cccovevcveeerenee. 5-37
EMOD_M

(Floating-point — BCD decomposition) 5-86
ENCO_M (Encode)cccvvvevvievieecieecieee 5-61
Encode (ENCO_M)cooooiviiiiiiiieeeee, 5-61
ENEG_M

(2' complement of floating-point) 5-31
EQ_E (EqQual (Z))eccveieieeireeee e 6-61
Equal (=) (EQ_E)..ccooviiereree e 6-61
EREXP_M

(BCD format data — floating-point) 5-87
ESTR_M (Floating-point — character string
[olo]01Y/=1 (=1 0] o) TP 5-82
EVAL_M (Character string — floating-point
CONVEISION) c..teeutieeieiieeniee et sree i e e e 5-82
Exclusive logical sum (XOR_E).................... 6-45
Exclusive OR (2 devices) (WXOR_M).......... 5-44
Exclusive OR (3 devices) (WXOR_3_M)..... 5-44
EXIT syntaXcccoeoveveiiieee e 4-21
EXP_E_MD (Floating-point natural

exponential operation)............c.ccceeiiiieenenn. 5-92
EXP(_E) (Natural exponent)............cccccuveee 6-24
EXPT(_E) (Natural exponential) 6-36
Fetch from character string left side

(LEFT_M) oo 5-84
Fetch from character string right side
(RIGHT_M) i 5-84
File register block No. switching

(RSET_MD) ..ot 5-105
FIND(_E) (Search for character

string from specified position)c.ccc.c... 6-77
First/last byte exchange (SWAP_MD).......... 5-36

Floating-point angle radian (RAD_E_MD).... 5-91
Floating-point — BIN conversion
(INT_E_MD) ..ottt 5-25

Index - 6

Floating-point — character string conversion
(ESTR_M) ettt 5-82
Floating-point COS operation (COS(_E))6-26
Floating-point COS-1 operation

(ACOS_E_MD) ..ot 5-90
Floating-point COS-1 operation

(ACOS(LE)) . eeveereeereiriienie e 6-29
Floating-point natural exponential operation
(EXP_E_MD) .ooiiiiiiiie e 5-92
Floating-point natural logarithm operation
(LOG_E_MD) ..ottt 5-93
Floating-point radian — angle conversion
(DEG_E_MD)....ooiiiiiiiiiiiiie e 5-91

Floating-point SIN operation (SIN_E_MD)....5-88
Floating-point SIN operation (SIN(_E))......... 6-25
Floating-point SIN-1 operation

(ASIN_E_MD) ..ot 5-89
Floating-point SIN-1 operation
(ASIN(_E)) e 6-28

Floating-point square root (SQR_E_MD)......5-92
Floating-point TAN operation (TAN(_E))....... 6-27
Floating-point TAN operation

(TAN_E_MD) ..ooiiieee e 5-89
Floating-point TAN-1 operation
(ATAN_E_MD)..c.oovieiieiece e 5-90
Floating-point TAN-1 operation

(ATAN(E)) ceeeeeceeeecece e 6-30
Floating-point — BCD decomposition
(EMOD_M) ..ottt 5-86
FLT_M (BIN — floating-point conversion).....5-26
FMOV_M (Same data block transfer) 5-34
FOR...DO syntaX........ccccecueevcreriiieeiee e, 4-15
FROM_M (Intelligent function module

1-word data read)........cccoveeveeniiniiiceees 5-71

[G]

GBIN_M (Gray code — BIN conversion) 5-29
GE_E (Greater than or equal to

right member (>=)) ..o, 6-59
Gray code — BIN conversion (GBIN_M) 5-29
Greater than or equal to

right member (>=) (GE_E).......ccccccvvvinenn. 6-59
Greater than right member (>)(GT_E) 6-57
GRY_M (BIN — gray code conversion)......... 5-28
GT_E (Greater than right member (>)) 6-57

Index - 6

[H]

HABIN_S_MD (Hexadecimal ASCIl — BIN
CONVEISION) ...ttt sttt stee i e sree e 5-77
HEX_S_MD (ASCIl — BIN conversion) 5-83
Hexadecimal ASCII — 32-bit BIN conversion

(DHABIN_S_MD) ..coeeiieeeieeeee e 5-77
Hexadecimal ASCIl — BIN conversion
(HABIN_S _MD)...ooiiiiiieieeee e 5-77
High-speed timer (TIMER_H_M)................... 5-5
HOUR_M (Clock data format conversion
(second — hour, minute, second)) 5-111

I/O refresh (RFS_M)......ooovveiiiiieciecee 5-38
IF conditional statement..............cccocceiien 4-7
INC_M (Increment).........ccoocevveiiienienieneee 5-21
Increment (INC_M)........coooeveiiiiiieceeceee 5-21
Index modificationcccoooiiiiiiiiiiine 3-16
INSERT/(_E) (Insertion of character

string into specified position)..............ccc....... 6-74
Insertion of character string into

specified position (INSERT(_E))........cccce..... 6-74
INSTR_M (Character string search)............. 5-86
INT_E_MD

(Floating-point — BIN conversion)................ 5-25

INT_TO_BOOL(_E) (Integer type

(INT) Boolean type (BOOL) conversion)...... 6-10
INT_TO_DINT(_E) (Integer type

(INT) double precision integer type

(DINT) CONVETrSION) ...ccveeeeeieeieeie e 6-11
INT_TO_REAL(_E) (Integer type (INT)
real number type (REAL) conversion).......... 6-12

INT_TO_STR(_E) (Integer type (INT)
character string type (STRING)

[ol0]01Y/=1 (=1 0] o) TP 6-13
INT s 3-3
Integer type (INT) Boolean type (BOOL)
conversion (INT_TO_BOOL(_E)).....ccce........ 6-10
Integer type (INT) character string type
(STRING) conversion

(INT_TO_STR(E)) seeseeieeiieieneee e 6-13

Integer type (INT) double precision

integer type (DINT) conversion
(INT_TO_DINT(_E)) e 6-11
Integer type (INT) real number type (REAL)
conversion (INT_TO_REAL(_E)).....ccccceenuene 6-12
Intelligent function module 1-word data read
(FROM_M)....ooiiiiiiiiiiieeeeee e 5-71

Index - 7

Intelligent function module 1-word data write

[L]

(TO_M) e 5-72
Intelligent function module 2-word data read
(DFRO_M)..ieee e 5-71
Intelligent function module 2-word data write
(DTO_M) et 5-72
Interrupt disable (DI_M).........ccoceviiiiinnene 5-37
Interrupt enable (El_M)........ccccccovviiiiiinennn, 5-37
LabelScooeiieiiieeeeee e 3-11
LE_E (Less than or equal to

right member (<=)) ..o, 6-63

Left rotation (carry flag included) (RCL_M)...5-50
Left rotation (carry flag not included)

(ROL_M) <t 5-50
Left rotation (ROL(_E))...ccccocvevvceiiiieieee 6-42
LEFT_M

(Fetch from character string left side) 5-84
LEFT(_E) (Acquisition from start

position of character string)cccccoceveenen. 6-70
LEN_S_MD

(Character string length detection)................ 5-79
LEN(_E)

(Character string length acquisition) 6-69
Less than or equal to right

member (<=) (LE_E).....ccccviniiiiiiien, 6-63
Less than right member (<) (LT_E)............. 6-65
LIMIT_MD (Upper/lower limit control) 5-99
LIMIT(_E) (Limiter).....ccccceeoeroeieeeee e 6-53
Limiter (LIMIT(_E))..cceoeeeereeeeeee e 6-53
LN(_E) (Natural logarithm)ccccceveenne. 6-23
LOG_E_MD (Floating-point natural

logarithm operation).............ccocoeeiiiiiiinenn. 5-93
Logical NOT (NOT(_E))....cccovverrerirenieienn, 6-46
Logical product (AND_E).......cccccvvviivnnnnnn. 6-43

Logical product (2 devices) (WAND_M) 5-39
Logical product (3 devices)

[M]

(WAND_3 M) 5-39
Logical sum (OR_E)occevviiiiiiiiiiiieee, 6-44
Logical sum (2 devices) (WOR_M)............... 5-41
Logical sum (3 devices) (WOR_3_M)........... 5-42
Low-speed timer (TIMER_M)cccooevienenne 5-4
LT _E (Less than right member (<))............. 6-65
MAX_M (Data maximum value retrieval)......5-65
MAX(_E) (Maximum value)cccceruennen. 6-49

Index - 7

[N]

Maximum value (MAX(_E)).....ccccorivrivnnnnne 6-49
MID(_E) (Acquisition from specified

position of character string)..........c.ccccceeenene 6-72
MIDR_M

(Any data fetch in character string)............... 5-85
MIDW_M (Any data replacement in

character string) ..o 5-85
MIN_M (Data minimum value retrieval)........ 5-66
MIN(_E) (Minimum value)..........cccccceecuernene 6-51
Minimum value (MIN(_E))......cccocovriiriine 6-51
MOD(_E) (Modulus operation)...................... 6-35
Modulus operation (MOD(_E))cccceeuunne. 6-35
MOVE(_E) (Assignment)cccocvrvernenne 6-38
MUL_E (Multiplication)cccccovvnirircienenne. 6-32
Multiplexer (MUX(_E)).....ccoooririiiiiieiiene 6-55
Multiplication (MUL_E)........cccccoviiiiiiiiinne 6-32
Multiplication of BCD 4-digit data

(BMULTI_M) ..ot 5-17
Multiplication of BCD 8-digit data

(DBMULTI_M) .ot 5-18
MUX(_E) (Multiplexer)........cccocoviiriinininnenn 6-55
n-bit data 1-bit left shift (BSFL_M)................ 5-54
n-bit data 1-bit right shift (BSFR_M)............. 5-54
n-bit left shift (SFL_M).......ccccoeoiniiiiiien 5-53
n-bit right shift (SFR_M)cccoiiiiniieene 5-53
Natural exponent (EXP(_E))......cccocvrvirnnne 6-24
Natural exponential (EXPT(_E)).....ccccccveu..e. 6-36
Natural logarithm (LN(_E))......ccccoeviriinnnnn 6-23
NDIS_M (Bit disconnection of any data) 5-63
NE_E (Unequal (<>)) ceecveevieecieeceecieee 6-67

NEG_M (2' complement of 16-bit BIN)......... 5-30
NOT exclusive OR (2 devices)

[O]

(WXNR_M) i 5-46
NOT exclusive OR (3 devices)

(WXNR_3_ M) i 5-47
NOT(_E) (Logical NOT)ccceevvriniiieienienne, 6-46
NUNI_M (Bit connection of any data)........... 5-64
OPErator......ccocei e 4-2
OR_E (Logical SUM)......cccoeerieneinennieenienniens 6-44
OUT_M (Output to device)........ccccvvevreernenns 5-4
Output to device (OUT_M).....cccovvivviiinnnnnn 5-4

Index - 8

[P]
PLOW_M (Program low-speed execution

registration)ccccccveve i 5-113
POFF_M

(Program output OFF standby) 5-112
Program low-speed execution registration
(PLOW_M) ..o 5-113

Program output OFF standby (POFF_M)...5-112
Program scan execution registration

(PSCAN_M) ..ot 5-113

Program standby (PSTOP_M)................... 5-112

PSCAN_M

(Program scan execution registration)......... 5-113

PSTOP_M (Program standby) 5-112
[Q]

QCDSET_M (Set of commentfile).............. 5-106

QDRSET_M (Set of file register file) 5-105
[R]

RAD_E_MD (Floating-point angle radian)....5-91
Random number generation (RND_M)......... 5-93
RCL_M (Left rotation (carry flag included))...5-50
RCR_M

(Right rotation (carry flag included)).............. 5-49
Read of clock data (DATERD_MD) 5-107
Real number type (REAL) character

string type (STRING) conversion
(REAL_TO_STR(_LE)) i serereerrrir e, 6-16
Real number type (REAL)

integer type (INT) conversion
(REAL_TO_INT(_E). cceieeereeere e 6-15
REAL_TO_DINT (REAL_TO_DINT(_E))......6-14
REAL_TO_DINT(_E) (REAL_TO_DINT)......6-14
REAL_TO_INT(_E) (Real number type

(REAL) integer type (INT) conversion).......... 6-15
REAL_TO_STR(_E) (Real number type

(REAL) character string type

(STRING) conversion)ccceevveecveesveeenne 6-16
REAL ..ottt 3-3
Refresh (COM_M)coooiiiiiiiiiiiiiieee, 5-70
REPEAT...UNTIL syntaXccccceuvvrercvennnnne. 4-18
REPLACE(_E) (Replacement of character
string from specified position)........................ 6-76
Replacement of character string from
specified position (REPLACE(_E))................ 6-76
Reset of device (RST_M)cccoviiviiiiiieenens 5-6
RETURN SYNtaX......ccoovevenenenieeieneneneeneennes 4-20
Index - 8

RFS_M (I/O refresh).......ccoiiiiiiciiiee, 5-38

[S]

Right rotation (ROR(_E)) «.eeecovveviieiiieciee 6-41
Right rotation (carry flag included)

(RCR_M) e 5-49
Right rotation (carry flag not included)

(ROR_M) et 5-49
RIGHT_M

(Fetch from character string right side)......... 5-84
RIGHT(_E)

(Acquisition from end of character string)..... 6-71
RND_M (Random number generation)........ 5-93
ROL_M (Left rotation

(carry flag not included))ccccocveiviieeine 5-50
ROL(_E) (Left rotation)..........ccccccvevveverennnee 6-42
ROR_M (Right rotation

(carry flag not included))ccooeeiiiiieiine 5-49
ROR(_E) (Right rotation)cccccccveevvenee. 6-41
RSET_MD

(File register block No. switching)............... 5-105
RST_M (Reset of device)........cccccvvevveevvennnee 5-6
Same data block transfer (FMOV_M)........... 5-34
Search for character string from

specified position (FIND(_E)).......cccccceveenenne 6-77
SECOND_M

(Clock data format conversion

(hour, minute, second — second)) 5-111
SEG_M (7-segment decode)............ccueuen.e... 5-62
SEL(_E) (Binary selection)..........cccoceeveennene 6-47
Sequence change (SRND_M).......ccccceeeeee 5-94
SER_M (Data search)........cccccccovevcieeecieeennnn. 5-59
Set of comment file (QCDSET_M) 5-106
Set of device (SET_M)cccovviiiiiiiiiiieiiee 5-6
Set of file register file (QADRSET_M)........... 5-105
SET_M (Set of device)cccevviviiiiinccienn 5-6
SFL_M (n-bit left shift)........ccccceoriiiiienne 5-53
SFR_M (n-bit right shift)...........cccoovvvninneene 5-53
SFT_M (1-bit shift of device)...........ccceeeenvee. 5-8
SHL(_E) (Bit left shift)cccceoiiiiiiieene 6-39
SHR(_E) (Bit right shift).........cccccoeiniiinnnenne 6-40
SIN_E_MD (Floating-point SIN operation)... 5-88
SIN(_E) (Floating-point SIN operation) 6-25
SORT_M (Data sort S)......cccoeeveveevcreeeciieenen. 5-67
SQR_E_MD (Floating-point square root)..... 5-92
SQRT(_E) (Square root)........cccceveereeneeneenne 6-22
Square root (SQRT(_E)) ..ccevvvverierieeiieniene 6-22
SRND_M (Sequence change)..........cccceeueeee 5-94

Index - 9

Stop (STOP_M) .. 5-9
STOP_M (StOP) cveveeveeeiieeceeeee e 5-9
STR_S_MD

(BIN — character string conversion) 5-80
STR_TO_BOOL(_E)

(Character string type (STRING)

Boolean type (BOOL) conversion)................. 6-17

STR_TO_DINT(_E) (Character string

type (STRING) double precision integer

type (DINT) conversion)ccccocceeveeieernenne 6-18
STR_TO_INT(_E) (Character string

type (STRING) integer type

[T]

(INT) CONVErSION) ...c..eveiiieeiieie e 6-19
STR_TO_REAL(_E)
Character string type (STRING) real
number type (REAL) conversion).................. 6-20
STRING_PLUS_3 M (Character string
data connection (3 devices))cccceeveenne 5-19
STRING_PLUS_M (Character string
data connection (2 devices))cccccevvevnenne 5-19
STRING ...t 3-3
STRING ...t 3-3
STRUCT ..ottt 3-3
Structured data type ..., 3-3
SUB_E (Subtraction)cccocevvvirieriennene 6-33
Subtraction (SUB_E)ccocoevvevieieeee 6-33
Subtraction of BCD 4-digit data (2 devices)
(BMINUS_M)...oiiiiiiieee e 5-14
Subtraction of BCD 4-digit data (3 devices)
(BMINUS_3_ M)t 5-14
Subtraction of BCD 8-digit data (2 devices)
(DBMINUS_M) ..ottt 5-16
Subtraction of BCD 8-digit data (3 devices)
(DBMINUS_3_M)...eeeiiiiirieeeee e 5-16
Subtraction of clock data
(DATEMINUS_M) ..ot 5-110
SUM_M (Bit check).....ccccoovieriiiiiieeeee, 5-60
SWAP_MD (First/last byte exchange) 5-36
TAN_E_MD
(Floating-point TAN operation)............cc.c...... 5-89
TAN(_E) (Floating-point TAN operation) 6-27
TEST_MD (Bit test of word device)............... 5-57
TIMER_H_M (High-speed timer).................... 5-5
TIMER_M (Low-speed timer)cccocevene 5-4
TO_M (Intelligent function module
1-word data Write)ccooeeeieiieiniineeees 5-72
Index - 9

Total value calculation (WSUM_M) 5-68
[U]

Unequal (<>) (NE_E) ..ooooieiiie 6-67

UNI_M (4-bit connection of 16-bit data) 5-63

Upper/lower limit control (LIMIT_MD)........... 5-99
[Vl

VAL_S MD

(Character string — BIN conversion)............ 5-81
[W]

WAND_3 M

(Logical product (3 devices)).......ccceeevverunens 5-39

WAND_M (Logical product (2 devices))....... 5-39

WDT reset (WDT_M) ..ccooevveiieieee e 5-114

WDT_M (WDT reset)ccocveveeveeneeieeeene 5-114

WHILE...DO syntaX........cccccoveireineenenneenann. 4-17

WOR_3_M (Logical sum (3 devices)) 5-42

WOR_M (Logical sum (2 devices)) 5-41

WORD_M

(32-bit BIN — 16-bit BIN conversion) 5-27

Write of clock data (DATEWR_MD)........... 5-108

WSUM_M (Total value calculation).............. 5-68

WTOB_MD

(Byte unit data disconnection) 5-64

WXNR_3 M

(NOT exclusive OR (3 devices)).........cceueee 5-47

WXNR_M

(NOT exclusive OR (2 devices)).........cceuuene. 5-46

WXOR_3_M (Exclusive OR (3 devices)) 5-44

WXOR_M (Exclusive OR (2 devices)).......... 5-44
[X]

XCH_M (16-bit data exchange).................... 5-35

XOR_E (Exclusive logical sum).................... 6-45

SIN(_E) (Floating-point SIN operation) 6-25
[Z]

ZONE_MD (Bit zone control)...........ccc........ 5-103

Index - 10 Index - 10

WARRANTY

Please confirm the following product warranty details before using this product.

1. Gratis Warranty Term and Gratis Warranty Range
If any faults or defects (hereinafter "Failure") found to be the responsibility of Mitsubishi occurs during use of the product
within the gratis warranty term, the product shall be repaired at no cost via the sales representative or Mitsubishi Service
Company.
However, if repairs are required onsite at domestic or overseas location, expenses to send an engineer will be solely at
the customer’s discretion. Mitsubishi shall not be held responsible for any re-commissioning, maintenance, or testing on-
site that involves replacement of the failed module.

[Gratis Warranty Term]
The gratis warranty term of the product shall be for one year after the date of purchase or delivery to a designated
place.
Note that after manufacture and shipment from Mitsubishi, the maximum distribution period shall be six (6) months, and
the longest gratis warranty term after manufacturing shall be eighteen (18) months. The gratis warranty term of repair
parts shall not exceed the gratis warranty term before repairs.

[Gratis Warranty Range]

(1) The range shall be limited to normal use within the usage state, usage methods and usage environment, etc.,
which follow the conditions and precautions, etc., given in the instruction manual, user's manual and caution labels
on the product.

(2) Even within the gratis warranty term, repairs shall be charged for in the following cases.

1. Failure occurring from inappropriate storage or handling, carelessness or negligence by the user. Failure caused
by the user's hardware or software design.

2. Failure caused by unapproved modifications, etc., to the product by the user.

3. When the Mitsubishi product is assembled into a user's device, Failure that could have been avoided if functions
or structures, judged as necessary in the legal safety measures the user's device is subject to or as necessary
by industry standards, had been provided.

4. Failure that could have been avoided if consumable parts (battery, backlight, fuse, etc.) designated in the
instruction manual had been correctly serviced or replaced.

5. Failure caused by external irresistible forces such as fires or abnormal voltages, and Failure caused by force
majeure such as earthquakes, lightning, wind and water damage.

6. Failure caused by reasons unpredictable by scientific technology standards at time of shipment from Mitsubishi.

7. Any other failure found not to be the responsibility of Mitsubishi or that admitted not to be so by the user.

2. Onerous repair term after discontinuation of production
(1) Mitsubishi shall accept onerous product repairs for seven (7) years after production of the product is discontinued.
Discontinuation of production shall be notified with Mitsubishi Technical Bulletins, etc.
(2) Product supply (including repair parts) is not available after production is discontinued.

3. Overseas service
Overseas, repairs shall be accepted by Mitsubishi's local overseas FA Center. Note that the repair conditions at each FA
Center may differ.

4. Exclusion of loss in opportunity and secondary loss from warranty liability
Regardless of the gratis warranty term, Mitsubishi shall not be liable for compensation of damages caused by any cause
found not to be the responsibility of Mitsubishi, loss in opportunity, lost profits incurred to the user by Failures of Mitsubishi
products, special damages and secondary damages whether foreseeable or not , compensation for accidents, and
compensation for damages to products other than Mitsubishi products, replacement by the user, maintenance of on-site
equipment, start-up test run and other tasks.

5. Changes in product specifications
The specifications given in the catalogs, manuals or technical documents are subject to change without prior notice.

6. Product application

(1) In using the Mitsubishi MELSEC programmable controller, the usage conditions shall be that the application will not
lead to a major accident even if any problem or fault should occur in the programmable controller device, and that
backup and fail-safe functions are systematically provided outside of the device for any problem or fault.

(2) The Mitsubishi programmable controller has been designed and manufactured for applications in general industries,
etc. Thus, applications in which the public could be affected such as in nuclear power plants and other power plants
operated by respective power companies, and applications in which a special quality assurance system is required,
such as for Railway companies or Public service purposes shall be excluded from the programmable controller
applications.

In addition, applications in which human life or property that could be greatly affected, such as in aircraft, medical
applications, incineration and fuel devices, manned transportation, equipment for recreation and amusement, and
safety devices, shall also be excluded from the programmable controller range of applications.

However, in certain cases, some applications may be possible, providing the user consults their local Mitsubishi
representative outlining the special requirements of the project, and providing that all parties concerned agree to the
special circumstances, solely at the users discretion.

SH (NA) 080366E-H

MELSEC-Q/L
Programming Manual

Structured Text

MODEL QCPU-P-ST-E
MODEL 13JF68

SH(NA)-080366E-H(1001)MEE

2% MITSUBISHI ELECTRIC CORPORATION

HEAD OFFICE : TOKYO BUILDING, 2-7-3 MARUNOUCH]I, CHIYODA-KU, TOKYO 100-8310, JAPAN
NAGOYA WORKS : 1-14 , YADA-MINAMI 5-CHOME , HIGASHI-KU, NAGOYA , JAPAN

When exported from Japan, this manual does not require application to the
Ministry of Economy, Trade and Industry for service transaction permission.

Specifications subject to change without notice.

	SAFETY PRECAUTIONS
	CONDITIONS OF USE FOR THE PRODUCT
	REVISIONS
	INTRODUCTION
	CONTENTS
	About Manuals
	How to Use This Manual
	Abbreviations and Generic Terms in This Manual
	1 OVERVIEW
	1.1 What Is the ST Language?
	1.2 Features of ST Program in MELSEC-Q/L Series
	1.3 ST Program Creating Procedure

	2 SYSTEM CONFIGURATION
	2.1 System Configuration
	2.1.1 Applicable CPUs
	2.1.2 Programming tool for ST program
	2.1.3 ST program specifications

	3 HANDLING OF CHARACTERS AND NUMERIC VALUES IN ST PROGRAMS
	3.1 Usable Characters
	3.2 Data Handling
	3.2.1 Data types
	3.2.2 About ANY type
	3.2.3 Array and structure

	3.3 Data Representation Methods
	3.3.1 Constants
	3.3.2 Labels
	3.3.3 Devices

	4 ST PROGRAM EXPRESSIONS
	4.1 Assignment Statement
	4.2 Operators
	4.2.1 Operator list
	4.2.2 Examples of using the operators

	4.3 Control Syntaxes
	4.3.1 Control syntax list
	4.3.2 Conditional statements
	4.3.3 Repeat statement
	4.3.4 Other control syntaxes
	4.3.5 Precautions for use of control syntaxes

	4.4 Call of Function Block
	4.5 Comment

	5 MELSEC FUNCTIONS
	How the functions are described
	5.1 Output
	5.1.1 Output to device OUT_M
	5.1.2 Low-speed timer TIMER_M
	5.1.3 High-speed timer TIMER_H_M
	5.1.4 Counter COUNTER_M
	5.1.5 Set of device SET_M
	5.1.6 Reset of device RST_M
	5.1.7 Conversion of direct output into pulse DELTA_M

	5.2 1-Bit Shift
	5.2.1 1-bit shift of device SFT_M

	5.3 Termination
	5.3.1 Stop STOP_M

	5.4 Comparison Operation
	5.4.1 Block data comparison (=) BKCMP_EQ_M
	5.4.2 Block data comparison (<>) BKCMP_NE_M
	5.4.3 Block data comparison (>) BKCMP_GT_M
	5.4.4 Block data comparison (<=) BKCMP_LE_M
	5.4.5 Block data comparison (<) BKCMP_LT_M
	5.4.6 Block data comparison (>=) BKCMP_GE_M

	5.5 Arithmetic Operation
	5.5.1 Addition of BCD 4-digit data (2 devices) BPLUS_M
	5.5.2 Addition of BCD 4-digit data (3 devices) BPLUS_3_M
	5.5.3 Subtraction of BCD 4-digit data (2 devices) BMINUS_M
	5.5.4 Subtraction of BCD 4-digit data (3 devices) BMINUS_3_M
	5.5.5 Addition of BCD 8-digit data (2 devices) DBPLUS_M
	5.5.6 Addition of BCD 8-digit data (3 devices) DBPLUS_3_M
	5.5.7 Subtraction of BCD 8-digit data (2 devices) DBMINUS_M
	5.5.8 Subtraction of BCD 8-digit data (3 devices) DBMINUS_3_M
	5.5.9 Multiplication of BCD 4-digit data BMULTI_M
	5.5.10 Division of BCD 4-digit data BDIVID_M
	5.5.11 Multiplication of BCD 8-digit data DBMULTI_M
	5.5.12 Division of BCD 8-digit data DBDIVID_M
	5.5.13 Character string data connection (2 devices) STRING_PLUS_M
	5.5.14 Character string data connection (3 devices) STRING_PLUS_3_M
	5.5.15 BIN block addition BKPLUS_M
	5.5.16 BIN block subtraction BKMINUS_M
	5.5.17 Increment INC_M
	5.5.18 Decrement DEC_M
	5.5.19 32-bit BIN increment DINC_M
	5.5.20 32-bit BIN decrement DDEC_M

	5.6 Data Conversion
	5.6.1 BIN --> BCD conversion BCD_M
	5.6.2 32-bit BIN --> BCD conversion DBCD_M
	5.6.3 BCD --> BIN conversion BIN_M
	5.6.4 32-bit BCD --> BIN conversion DBIN_M
	5.6.5 Floating-point --> BIN conversion INT_E_MD
	5.6.6 32-bit floating-point --> BIN conversion DINT_E_MD
	5.6.7 BIN --> floating-point conversion FLT_M
	5.6.8 32-bit BIN --> floating-point conversion DFLT_M
	5.6.9 16-bit BIN --> 32-bit BIN conversion DBL_M
	5.6.10 32-bit BIN --> 16-bit BIN conversion WORD_M
	5.6.11 BIN --> gray code conversion GRY_M
	5.6.12 32-bit BIN --> gray code conversion DGRY_M
	5.6.13 Gray code --> BIN conversion GBIN_M
	5.6.14 32-bit gray code --> BIN conversion DGBIN_M
	5.6.15 2' complement of 16-bit BIN NEG_M
	5.6.16 2' complement of 32-bit BIN DNEG_M
	5.6.17 2' complement of floating-point ENEG_M
	5.6.18 Block BIN --> BCD conversion BKBCD_M
	5.6.19 Block BCD --> BIN conversion BKBIN_M

	5.7 Data Transfer
	5.7.1 16-bit data NOT transfer CML_M
	5.7.2 32-bit data NOT transfer DCML_M
	5.7.3 Block transfer BMOV_M
	5.7.4 Same data block transfer FMOV_M
	5.7.5 16-bit data exchange XCH_M
	5.7.6 32-bit data exchange DXCH_M
	5.7.7 Block data exchange BXCH_M
	5.7.8 First/last byte exchange SWAP_MD

	5.8 Program Execution Control
	5.8.1 Interrupt disable DI_M
	5.8.2 Interrupt enable EI_M

	5.9 I/O Refresh
	5.9.1 I/O refresh RFS_M

	5.10 Logical Operation Commands
	5.10.1 Logical product (2 devices) WAND_M
	5.10.2 Logical product (3 devices) WAND_3_M
	5.10.3 32-bit data logical product (2 devices) DAND_M
	5.10.4 32-bit data logical product (3 devices) DAND_3_M
	5.10.5 Block data logical product BKAND_M
	5.10.6 Logical sum (2 devices) WOR_M
	5.10.7 Logical sum (3 devices) WOR_3_M
	5.10.8 32-bit data logical sum (2 devices) DOR_M
	5.10.9 32-bit data logical sum (3 devices) DOR_3_M
	5.10.10 Block data logical sum BKOR_M
	5.10.11 Exclusive OR (2 devices) WXOR_M
	5.10.12 Exclusive OR (3 devices) WXOR_3_M
	5.10.13 32-bit data exclusive OR (2 devices) DXOR_M
	5.10.14 32-bit data exclusive OR (3 devices) DXOR_3_M
	5.10.15 Block data exclusive OR BKXOR_M
	5.10.16 NOT exclusive OR (2 devices) WXNR_M
	5.10.17 NOT exclusive OR (3 devices) WXNR_3_M
	5.10.18 32-bit data NOT exclusive OR (2 devices) DXNR_M
	5.10.19 32-bit data NOT exclusive OR (3 devices) DXNR_3_M
	5.10.20 Block data NOT exclusive OR BKXNR_M

	5.11 Rotation
	5.11.1 Right rotation (carry flag not included) ROR_M
	5.11.2 Right rotation (carry flag included) RCR_M
	5.11.3 Left rotation (carry flag not included) ROL_M
	5.11.4 Left rotation (carry flag included) RCL_M
	5.11.5 32-bit data right rotation (carry flag not included) DROR_M
	5.11.6 32-bit data right rotation (carry flag included) DRCR_M
	5.11.7 32-bit data left rotation (carry flag not included) DROL_M
	5.11.8 32-bit data left rotation (carry flag included) DRCL_M

	5.12 Shift
	5.12.1 n-bit right shift SFR_M
	5.12.2 n-bit left shift SFL_M
	5.12.3 n-bit data 1-bit right shift BSFR_M
	5.12.4 n-bit data 1-bit left shift BSFL_M
	5.12.5 1-word right shift DSFR_M
	5.12.6 1-word left shift DSFL_M

	5.13 Bit Processing
	5.13.1 Bit set of word device BSET_M
	5.13.2 Bit reset of word device BRST_M
	5.13.3 Bit test of word device TEST_MD
	5.13.4 Bit test of 32-bit data DTEST_MD
	5.13.5 Bit device batch reset BKRST_M

	5.14 Data Processing
	5.14.1 Data search SER_M
	5.14.2 32-bit data search DSER_M
	5.14.3 Bit check SUM_M
	5.14.4 32-bit data bit check DSUM_M
	5.14.5 Decode DECO_M
	5.14.6 Encode ENCO_M
	5.14.7 7-segment decode SEG_M
	5.14.8 4-bit disconnection of 16-bit data DIS_M
	5.14.9 4-bit connection of 16-bit data UNI_M
	5.14.10 Bit disconnection of any data NDIS_M
	5.14.11 Bit connection of any data NUNI_M
	5.14.12 Byte unit data disconnection WTOB_MD
	5.14.13 Byte unit data connection BTOW_MD
	5.14.14 Data maximum value retrieval MAX_M
	5.14.15 32-bit data maximum value retrieval DMAX_M
	5.14.16 Data minimum value retrieval MIN_M
	5.14.17 32-bit data minimum value retrieval DMIN_M
	5.14.18 Data sort SORT_M
	5.14.19 32-bit data sort DSORT_M
	5.14.20 Total value calculation WSUM_M
	5.14.21 32-bit total value calculation DWSUM_M

	5.15 Structuring
	5.15.1 Refresh COM_M

	5.16 Buffer Memory Access
	5.16.1 Intelligent function module 1-word data read FROM_M
	5.16.2 Intelligent function module 2-word data read DFRO_M
	5.16.3 Intelligent function module 1-word data write TO_M
	5.16.4 Intelligent function module 2-word data write DTO_M

	5.17 Character string processing
	5.17.1 BIN --> decimal ASCII conversion BINDA_S_MD
	5.17.2 32-bit BIN --> decimal ASCII conversion DBINDA_S_MD
	5.17.3 BIN --> hexadecimal ASCII conversion BINHA_S_MD
	5.17.4 32-bit BIN --> hexadecimal ASCII conversion DBINHA_S_MD
	5.17.5 BCD --> 4-digit decimal ASCII conversion BCDDA_S_MD
	5.17.6 BCD 8-digit --> decimal ASCII conversion DBCDDA_S_MD
	5.17.7 Decimal ASCII --> BIN conversion DABIN_S_MD
	5.17.8 Decimal ASCII --> 32-bit BIN conversion DDABIN_S_MD
	5.17.9 Hexadecimal ASCII --> BIN conversion HABIN_S_MD
	5.17.10 Hexadecimal ASCII --> 32-bit BIN conversion DHABIN_S_MD
	5.17.11 Decimal ASCII --> BCD 4-digit conversion DABCD_S_MD
	5.17.12 Decimal ASCII --> BCD 8-digit conversion DDABCD_S_MD
	5.17.13 Device comment data read COMRD_S_MD
	5.17.14 Character string length detection LEN_S_MD
	5.17.15 BIN --> character string conversion STR_S_MD
	5.17.16 32-bit BIN --> character string conversion DSTR_S_MD
	5.17.17 Character string --> BIN conversion VAL_S_MD
	5.17.18 Character string --> 32-bit BIN conversion DVAL_S_MD
	5.17.19 Floating-point --> character string conversion ESTR_M
	5.17.20 Character string --> floating-point conversion EVAL_M
	5.17.21 BIN --> ASCII conversion ASC_S_MD
	5.17.22 ASCII --> BIN conversion HEX_S_MD
	5.17.23 Fetch from character string right side RIGHT_M
	5.17.24 Fetch from character string left side LEFT_M
	5.17.25 Any data fetch in character string MIDR_M
	5.17.26 Any data replacement in character string MIDW_M
	5.17.27 Character string search INSTR_M
	5.17.28 Floating-point --> BCD decomposition EMOD_M
	5.17.29 BCD format data --> floating-point EREXP_M

	5.18 Special Functions
	5.18.1 Floating-point SIN operation SIN_E_MD
	5.18.2 Floating-point COS operation COS_E_MD
	5.18.3 Floating-point TAN operation TAN_E_MD
	5.18.4 Floating-point SIN-1 operation ASIN_E_MD
	5.18.5 Floating-point COS-1 operation ACOS_E_MD
	5.18.6 Floating-point TAN-1 operation ATAN_E_MD
	5.18.7 Floating-point angle --> radian RAD_E_MD
	5.18.8 Floating-point radian --> angle conversion DEG_E_MD
	5.18.9 Floating-point square root SQR_E_MD
	5.18.10 Floating-point natural exponential operation EXP_E_MD
	5.18.11 Floating-point natural logarithm operation LOG_E_MD
	5.18.12 Random number generation RND_M
	5.18.13 Sequence change SRND_M
	5.18.14 BCD 4-digit square root BSQR_MD
	5.18.15 BCD 8-digit square root BDSQR_MD
	5.18.16 BCD type SIN operation BSIN_MD
	5.18.17 BCD type COS operation BCOS_MD
	5.18.18 BCD type TAN operation BTAN_MD
	5.18.19 BCD type SIN-1 operation BASIN_MD
	5.18.20 BCD type COS-1 operation BACOS_MD
	5.18.21 BCD type TAN-1 operation BATAN_MD

	5.19 Data Control
	5.19.1 Upper/lower limit control LIMIT_MD
	5.19.2 32-bit data upper/lower limit control DLIMIT_MD
	5.19.3 Dead band control BAND_MD
	5.19.4 32-bit data dead band control DBAND_MD
	5.19.5 Bit zone control ZONE_MD
	5.19.6 32-bit data bit zone control DZONE_MD
	5.19.7 File register block No. switching RSET_MD
	5.19.8 Set of file register file QDRSET_M
	5.19.9 Set of comment file QCDSET_M

	5.20 Clock
	5.20.1 Read of clock data DATERD_MD
	5.20.2 Write of clock data DATEWR_MD
	5.20.3 Addition of clock data DATEPLUS_M
	5.20.4 Subtraction of clock data DATEMINUS_M
	5.20.5 Clock data format conversion (hour, minute, second --> second) SECOND_M
	5.20.6 Clock data format conversion (second --> hour, minute, second) HOUR_M

	5.21 Program Control
	5.21.1 Program standby PSTOP_M
	5.21.2 Program output OFF standby POFF_M
	5.21.3 Program scan execution registration PSCAN_M
	5.21.4 Program low-speed execution registration PLOW_M

	5.22 Others
	5.22.1 WDT reset WDT_M

	6 IEC FUNCTIONS
	How the functions are described
	6.1 Type Conversion Functions
	6.1.1 Boolean type (BOOL) --> double precision integer type (DINT) conversion BOOL_TO_DINT BOOL_TO_DINT_E
	6.1.2 Boolean type (BOOL) --> integer type (INT) conversion BOOL_TO_INT BOOL_TO_INT_E
	6.1.3 Boolean type (BOOL) --> character string type (STRING) conversion BOOL_TO_STR BOOL_TO_STR_E
	6.1.4 Double precision integer type (DINT) --> Boolean type (BOOL) conversion DINT_TO_BOOL DINT_TO_BOOL_E
	6.1.5 Double precision integer type (DINT) --> integer type (INT) conversion DINT_TO_INT DINT_TO_INT_E
	6.1.6 Double precision integer type (DINT) --> real number type (REAL) conversion DINT_TO_REAL DINT_TO_REAL_E
	6.1.7 Double precision integer type (DINT) --> character string type (STRING) conversion DINT_TO_STR DINT_TO_STR_E
	6.1.8 Integer type (INT) --> Boolean type (BOOL) conversion INT_TO_BOOL INT_TO_BOOL_E
	6.1.9 Integer type (INT) --> double precision integer type (DINT) conversion INT_TO_DINT INT_TO_DINT_E
	6.1.10 Integer type (INT) --> real number type (REAL) conversion INT_TO_REAL INT_TO_REAL_E
	6.1.11 Integer type (INT) --> character string type (STRING) conversion INT_TO_STR INT_TO_STR_E
	6.1.12 Real number type (REAL) --> double precision integer type (DINT) conversion REAL_TO_DINT REAL_TO_DINT_E
	6.1.13 Real number type (REAL) --> integer type (INT) conversion REAL_TO_INT REAL_TO_INT_E
	6.1.14 Real number type (REAL) --> character string type (STRING) conversion REAL_TO_STR REAL_TO_STR_E
	6.1.15 Character string type (STRING) --> Boolean type (BOOL) conversion STR_TO_BOOL STR_TO_BOOL_E
	6.1.16 Character string type (STRING) --> double precision integer type (DINT) conversion STR_TO_DINT STR_TO_DINT_E
	6.1.17 Character string type (STRING) --> integer type (INT) conversion STR_TO_INT STR_TO_INT_E
	6.1.18 Character string type (STRING) --> real number type (REAL) conversion STR_TO_REAL STR_TO_REAL_E

	6.2 Numerical Functions (General Functions)
	6.2.1 Absolute value ABS ABS_E
	6.2.2 Square root SQRT SQRT_E

	6.3 Numeric Functions (Logarithm Functions)
	6.3.1 Natural logarithm LN LN_E
	6.3.2 Natural exponent EXP EXP_E

	6.4 Numerical Functions (Trigonometric Functions)
	6.4.1 Floating-point SIN operation SIN SIN_E
	6.4.2 Floating-point COS operation COS COS_E
	6.4.3 Floating-point TAN operation TAN TAN_E
	6.4.4 Floating-point SIN-1 operation ASIN ASIN_E
	6.4.5 Floating-point COS-1 operation ACOS ACOS_E
	6.4.6 Floating-point TAN-1 operation ATAN ATAN_E

	6.5 Arithmetic Operation Functions
	6.5.1 Addition ADD_E
	6.5.2 Multiplication MUL_E
	6.5.3 Subtraction SUB_E
	6.5.4 Division DIV_E
	6.5.5 Modulus operation MOD MOD_E
	6.5.6 Natural exponential EXPT EXPT_E
	6.5.7 Assignment MOVE MOVE_E

	6.6 Bit Shift Functions
	6.6.1 Bit left shift SHL SHL_E
	6.6.2 Bit right shift SHR SHR_E
	6.6.3 Right rotation ROR ROR_E
	6.6.4 Left rotation ROL ROL_E

	6.7 Bit Type Boolean Functions
	6.7.1 Logical product AND_E
	6.7.2 Logical sum OR_E
	6.7.3 Exclusive logical sum XOR_E
	6.7.4 Logical NOT NOT NOT_E

	6.8 Selection Functions
	6.8.1 Binary selection SEL SEL_E
	6.8.2 Maximum value MAX MAX_E
	6.8.3 Minimum value MIN MIN_E
	6.8.4 Limiter LIMIT LIMIT_E
	6.8.5 Multiplexer MUX MUX_E

	6.9 Comparison Functions
	6.9.1 Greater than right member (>) GT_E
	6.9.2 Greater than or equal to right member (>=) GE_E
	6.9.3 Equal (=) EQ_E
	6.9.4 Less than or equal to right member (<=) LE_E
	6.9.5 Less than right member (<) LT_E
	6.9.6 Unequal (<>) NE_E

	6.10 Character String Functions
	6.10.1 Character string length acquisition LEN LEN_E
	6.10.2 Acquisition from start position of character string LEFT LEFT_E
	6.10.3 Acquisition from end of character string RIGHT RIGHT_E
	6.10.4 Acquisition from specified position of character string MID MID_E
	6.10.5 Concatenation of character strings CONCAT CONCAT_E
	6.10.6 Insertion of character string into specified position INSERT INSERT_E
	6.10.7 Deletion of character string from specified position DELETE DELETE_E
	6.10.8 Replacement of character string from specified position REPLACE REPLACE_E
	6.10.9 Search for character string from specified position FIND FIND_E

	7 ERROR LIST
	APPENDICES
	Appendix 1 Character Strings that cannot be Used as Labels and FB Names
	Appendix 2 ST instruction table for GX Developer and GX Works2

	INDEX
	WARRANTY

